Step
*
2
1
1
1
of Lemma
wfd-tree-cases
.....equality..... 
1. A : Type
2. w : wfd-tree(A)
3. ¬↑co-w-null(w)
4. wfd-subtrees(w) ∈ A ⟶ wfd-tree(A)
5. ¬↑co-w-null(w)
⊢ mk-wfd-tree(wfd-subtrees(w)) ~ w
BY
{ (MoveToConcl (-1)
   THEN (InstLemma `co-w-ext` [A]⋅ THENA Auto)
   THEN (GenConcl ⌜w = z ∈ (Unit + (A ⟶ co-w(A)))⌝⋅ THENA Auto)
   THEN ThinVar `w'
   THEN D (-1)
   THEN RepUR ``co-w-null wfd-subtrees mk-wfd-tree`` 0
   THEN Auto) }
Latex:
Latex:
.....equality..... 
1.  A  :  Type
2.  w  :  wfd-tree(A)
3.  \mneg{}\muparrow{}co-w-null(w)
4.  wfd-subtrees(w)  \mmember{}  A  {}\mrightarrow{}  wfd-tree(A)
5.  \mneg{}\muparrow{}co-w-null(w)
\mvdash{}  mk-wfd-tree(wfd-subtrees(w))  \msim{}  w
By
Latex:
(MoveToConcl  (-1)
  THEN  (InstLemma  `co-w-ext`  [A]\mcdot{}  THENA  Auto)
  THEN  (GenConcl  \mkleeneopen{}w  =  z\mkleeneclose{}\mcdot{}  THENA  Auto)
  THEN  ThinVar  `w'
  THEN  D  (-1)
  THEN  RepUR  ``co-w-null  wfd-subtrees  mk-wfd-tree``  0
  THEN  Auto)
Home
Index