Nuprl Lemma : apply-strict-fun
∀[f:StrictFun]. (f ⊥ ~ ⊥)
Proof
Definitions occuring in Statement : 
strict-fun: StrictFun
, 
bottom: ⊥
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
strict-fun: StrictFun
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
Lemmas referenced : 
partial-void, 
bottom_wf-partial, 
void-value-type, 
strict-fun_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
lemma_by_obid, 
dependent_functionElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
voidEquality, 
independent_isectElimination, 
hypothesis, 
sqequalAxiom
Latex:
\mforall{}[f:StrictFun].  (f  \mbot{}  \msim{}  \mbot{})
Date html generated:
2016_05_15-PM-10_04_20
Last ObjectModification:
2015_12_27-PM-05_16_51
Theory : bar!type
Home
Index