Nuprl Lemma : apply-strict-fun

[f:StrictFun]. (f ⊥ ~ ⊥)


Proof




Definitions occuring in Statement :  strict-fun: StrictFun bottom: uall: [x:A]. B[x] apply: a sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T strict-fun: StrictFun all: x:A. B[x] uimplies: supposing a
Lemmas referenced :  partial-void bottom_wf-partial void-value-type strict-fun_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lemma_by_obid dependent_functionElimination thin applyEquality hypothesisEquality isectElimination voidEquality independent_isectElimination hypothesis sqequalAxiom

Latex:
\mforall{}[f:StrictFun].  (f  \mbot{}  \msim{}  \mbot{})



Date html generated: 2016_05_15-PM-10_04_20
Last ObjectModification: 2015_12_27-PM-05_16_51

Theory : bar!type


Home Index