Nuprl Lemma : partial-void
∀z:partial(Void). (z ~ ⊥)
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
bottom: ⊥
, 
all: ∀x:A. B[x]
, 
void: Void
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
no-value-bottom, 
void-value-type, 
partial_wf, 
has-value_wf-partial, 
termination
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
voidEquality, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
introduction
Latex:
\mforall{}z:partial(Void).  (z  \msim{}  \mbot{})
Date html generated:
2016_05_14-AM-06_11_16
Last ObjectModification:
2015_12_26-AM-11_51_51
Theory : partial_1
Home
Index