Nuprl Lemma : partial-void

z:partial(Void). (z ~ ⊥)


Proof




Definitions occuring in Statement :  partial: partial(T) bottom: all: x:A. B[x] void: Void sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q false: False prop:
Lemmas referenced :  no-value-bottom void-value-type partial_wf has-value_wf-partial termination
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin voidEquality independent_isectElimination hypothesis hypothesisEquality introduction

Latex:
\mforall{}z:partial(Void).  (z  \msim{}  \mbot{})



Date html generated: 2016_05_14-AM-06_11_16
Last ObjectModification: 2015_12_26-AM-11_51_51

Theory : partial_1


Home Index