Nuprl Lemma : no-value-bottom

[T:Type]. ∀[x:partial(T)]. ~ ⊥ supposing ¬(x)↓ supposing value-type(T)


Proof




Definitions occuring in Statement :  partial: partial(T) value-type: value-type(T) has-value: (a)↓ bottom: uimplies: supposing a uall: [x:A]. B[x] not: ¬A universe: Type sqequal: t
Definitions unfolded in proof :  prop: top: Top uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] not: ¬A implies:  Q false: False partial: partial(T) quotient: x,y:A//B[x; y] and: P ∧ Q cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q squash: T
Lemmas referenced :  value-type_wf partial_wf has-value_wf-partial not_wf istype-void bottom-sqle partial-not-exception has-value_wf_base is-exception_wf base-partial_wf per-partial_wf istype-sqle
Rules used in proof :  universeEquality equalitySymmetry equalityTransitivity because_Cache sqequalRule independent_isectElimination hypothesisEquality Error :universeIsType,  axiomSqEquality hypothesis voidElimination Error :isect_memberEquality_alt,  thin isectElimination sqequalHypSubstitution extract_by_obid sqequalSqle cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution pointwiseFunctionality divergentSqle independent_functionElimination pertypeElimination promote_hyp productElimination Error :productIsType,  Error :equalityIstype,  sqequalBase sqleExtensionalEquality independent_pairFormation Error :lambdaFormation_alt,  baseClosed imageMemberEquality hyp_replacement Error :dependent_set_memberEquality_alt,  Error :inhabitedIsType,  applyLambdaEquality setElimination rename

Latex:
\mforall{}[T:Type].  \mforall{}[x:partial(T)].  x  \msim{}  \mbot{}  supposing  \mneg{}(x)\mdownarrow{}  supposing  value-type(T)



Date html generated: 2019_06_20-PM-00_34_42
Last ObjectModification: 2018_11_28-PM-00_40_13

Theory : partial_1


Home Index