Nuprl Lemma : bar_wf
∀[T:Type]. (bar(T) ∈ Type)
Proof
Definitions occuring in Statement : 
bar: bar(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bar: bar(T)
Lemmas referenced : 
partial_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  (bar(T)  \mmember{}  Type)
Date html generated:
2016_05_15-PM-10_03_36
Last ObjectModification:
2016_01_05-PM-05_49_01
Theory : bar!type
Home
Index