Nuprl Lemma : fixpoint-induction-bottom-bar
∀[E,S:Type].  (∀[G:S ⟶ bar(E)]. ∀[g:S ⟶ S].  (G[fix(g)] ∈ bar(E))) supposing ((⊥ ∈ S) and mono(E) and value-type(E))
Proof
Definitions occuring in Statement : 
bar: bar(T)
, 
mono: mono(T)
, 
bottom: ⊥
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
fix: fix(F)
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
bar: bar(T)
, 
so_apply: x[s]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
Lemmas referenced : 
fixpoint-induction-bottom
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
sqequalHypSubstitution, 
hypothesis
Latex:
\mforall{}[E,S:Type].
    (\mforall{}[G:S  {}\mrightarrow{}  bar(E)].  \mforall{}[g:S  {}\mrightarrow{}  S].    (G[fix(g)]  \mmember{}  bar(E)))  supposing 
          ((\mbot{}  \mmember{}  S)  and 
          mono(E)  and 
          value-type(E))
Date html generated:
2016_05_15-PM-10_04_45
Last ObjectModification:
2016_01_05-PM-06_48_38
Theory : bar!type
Home
Index