Nuprl Lemma : fixpoint-induction-bottom
∀[E,S:Type].
  (∀[G:S ⟶ partial(E)]. ∀[g:S ⟶ S].  (G fix(g) ∈ partial(E))) supposing ((⊥ ∈ S) and mono(E) and value-type(E))
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
mono: mono(T)
, 
value-type: value-type(T)
, 
bottom: ⊥
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
fix: fix(F)
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
top: Top
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
sq_stable: SqStable(P)
, 
rev_implies: P 
⇐ Q
, 
nat: ℕ
, 
mono: mono(T)
, 
is-above: is-above(T;a;z)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
Lemmas referenced : 
partial_wf, 
equal-wf-base, 
mono_wf, 
value-type_wf, 
pi2_wf, 
pi1_wf, 
equal_wf, 
fixpoint-induction-bottom-base, 
top_wf, 
subtype_rel_product, 
pair-eta, 
member_wf, 
base-equal-partial, 
sq_stable__has-value, 
has-value_wf_base, 
has-value_wf-partial, 
fun_exp_wf, 
is-exception_wf, 
fixpoint_ub, 
has-value-monotonic, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
and_wf, 
termination, 
fixpoint-upper-bound, 
equal-wf-base-T, 
sqle_wf_base, 
termination-equality-base, 
nat_wf, 
partial-not-exception, 
fix-not-exception
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsType, 
Error :inhabitedIsType, 
hypothesisEquality, 
isect_memberEquality, 
isectElimination, 
thin, 
functionEquality, 
Error :universeIsType, 
extract_by_obid, 
because_Cache, 
baseClosed, 
universeEquality, 
independent_pairEquality, 
productEquality, 
lambdaFormation, 
pointwiseFunctionality, 
applyLambdaEquality, 
lambdaEquality, 
independent_pairFormation, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
closedConclusion, 
baseApply, 
voidEquality, 
voidElimination, 
independent_isectElimination, 
cumulativity, 
applyEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
compactness, 
hyp_replacement, 
sqleRule, 
divergentSqle, 
sqleReflexivity, 
intEquality, 
dependent_set_memberEquality, 
setElimination, 
rename, 
dependent_pairFormation
Latex:
\mforall{}[E,S:Type].
    (\mforall{}[G:S  {}\mrightarrow{}  partial(E)].  \mforall{}[g:S  {}\mrightarrow{}  S].    (G  fix(g)  \mmember{}  partial(E)))  supposing 
          ((\mbot{}  \mmember{}  S)  and 
          mono(E)  and 
          value-type(E))
Date html generated:
2019_06_20-PM-00_34_08
Last ObjectModification:
2018_09_26-PM-01_21_20
Theory : partial_1
Home
Index