Nuprl Lemma : fixpoint-upper-bound
∀j:ℕ. ∀F:Top.  (F^j ⊥ ≤ fix(F))
Proof
Definitions occuring in Statement : 
fun_exp: f^n, 
nat: ℕ, 
bottom: ⊥, 
top: Top, 
all: ∀x:A. B[x], 
apply: f a, 
fix: fix(F), 
sqle: s ≤ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
top: Top, 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
subtract: n - m, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
nat_plus: ℕ+
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
top_wf, 
fun_exp0_lemma, 
bottom-sqle, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
fun_exp_unroll_1, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
introduction, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
axiomSqleEquality, 
isect_memberEquality, 
voidEquality, 
unionElimination, 
independent_pairFormation, 
productElimination, 
addEquality, 
applyEquality, 
intEquality, 
minusEquality, 
because_Cache, 
dependent_set_memberEquality, 
sqleRule, 
sqleReflexivity
Latex:
\mforall{}j:\mBbbN{}.  \mforall{}F:Top.    (F\^{}j  \mbot{}  \mleq{}  fix(F))
Date html generated:
2016_05_13-PM-04_07_22
Last ObjectModification:
2015_12_26-AM-11_03_59
Theory : fun_1
Home
Index