Nuprl Lemma : fixpoint-induction-bottom-base

E,S:Type. ∀G,g:Base.
  ((G ∈ S ⟶ partial(E))  (g ∈ S ⟶ S)  value-type(E)  mono(E)  (⊥ ∈ S)  (G fix(g) ∈ partial(E)))


Proof




Definitions occuring in Statement :  partial: partial(T) mono: mono(T) value-type: value-type(T) bottom: all: x:A. B[x] implies:  Q member: t ∈ T apply: a fix: fix(F) function: x:A ⟶ B[x] base: Base universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] uimplies: supposing a not: ¬A false: False subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] mono: mono(T) is-above: is-above(T;a;z) exists: x:A. B[x] and: P ∧ Q cand: c∧ B top: Top
Lemmas referenced :  mono_wf value-type_wf base_wf partial_wf equal-wf-base base-member-partial fix-not-exception partial-not-exception fun_exp_wf is-exception_wf set_subtype_base le_wf int_subtype_base nat_wf has-value_wf_base termination fixpoint-upper-bound equal-wf-base-T sqle_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution hypothesis introduction extract_by_obid isectElimination thin hypothesisEquality universeEquality baseClosed functionEquality independent_isectElimination sqequalRule baseApply closedConclusion applyEquality independent_functionElimination voidElimination intEquality lambdaEquality natural_numberEquality because_Cache Error :isect_memberFormation_alt,  axiomEquality equalityTransitivity equalitySymmetry Error :universeIsType,  compactness dependent_functionElimination dependent_pairFormation independent_pairFormation sqleRule divergentSqle sqleReflexivity isect_memberEquality voidEquality productEquality

Latex:
\mforall{}E,S:Type.  \mforall{}G,g:Base.
    ((G  \mmember{}  S  {}\mrightarrow{}  partial(E))
    {}\mRightarrow{}  (g  \mmember{}  S  {}\mrightarrow{}  S)
    {}\mRightarrow{}  value-type(E)
    {}\mRightarrow{}  mono(E)
    {}\mRightarrow{}  (\mbot{}  \mmember{}  S)
    {}\mRightarrow{}  (G  fix(g)  \mmember{}  partial(E)))



Date html generated: 2019_06_20-PM-00_34_04
Last ObjectModification: 2018_09_26-PM-01_13_26

Theory : partial_1


Home Index