Nuprl Lemma : fixpoint-induction-bottom-base
∀E,S:Type. ∀G,g:Base.
  ((G ∈ S ⟶ partial(E)) 
⇒ (g ∈ S ⟶ S) 
⇒ value-type(E) 
⇒ mono(E) 
⇒ (⊥ ∈ S) 
⇒ (G fix(g) ∈ partial(E)))
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
mono: mono(T)
, 
value-type: value-type(T)
, 
bottom: ⊥
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
apply: f a
, 
fix: fix(F)
, 
function: x:A ⟶ B[x]
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
not: ¬A
, 
false: False
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
mono: mono(T)
, 
is-above: is-above(T;a;z)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
top: Top
Lemmas referenced : 
mono_wf, 
value-type_wf, 
base_wf, 
partial_wf, 
equal-wf-base, 
base-member-partial, 
fix-not-exception, 
partial-not-exception, 
fun_exp_wf, 
is-exception_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
nat_wf, 
has-value_wf_base, 
termination, 
fixpoint-upper-bound, 
equal-wf-base-T, 
sqle_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
universeEquality, 
baseClosed, 
functionEquality, 
independent_isectElimination, 
sqequalRule, 
baseApply, 
closedConclusion, 
applyEquality, 
independent_functionElimination, 
voidElimination, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
because_Cache, 
Error :isect_memberFormation_alt, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
compactness, 
dependent_functionElimination, 
dependent_pairFormation, 
independent_pairFormation, 
sqleRule, 
divergentSqle, 
sqleReflexivity, 
isect_memberEquality, 
voidEquality, 
productEquality
Latex:
\mforall{}E,S:Type.  \mforall{}G,g:Base.
    ((G  \mmember{}  S  {}\mrightarrow{}  partial(E))
    {}\mRightarrow{}  (g  \mmember{}  S  {}\mrightarrow{}  S)
    {}\mRightarrow{}  value-type(E)
    {}\mRightarrow{}  mono(E)
    {}\mRightarrow{}  (\mbot{}  \mmember{}  S)
    {}\mRightarrow{}  (G  fix(g)  \mmember{}  partial(E)))
Date html generated:
2019_06_20-PM-00_34_04
Last ObjectModification:
2018_09_26-PM-01_13_26
Theory : partial_1
Home
Index