Nuprl Lemma : fix-not-exception
∀[G,g:Base].  ¬is-exception(G fix(g)) supposing ∀j:ℕ. (¬is-exception(G (g^j ⊥)))
Proof
Definitions occuring in Statement : 
fun_exp: f^n
, 
nat: ℕ
, 
bottom: ⊥
, 
is-exception: is-exception(t)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
apply: f a
, 
fix: fix(F)
, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
is-exception: is-exception(t)
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
Lemmas referenced : 
base_wf, 
int_subtype_base, 
le_wf, 
set_subtype_base, 
not_wf, 
nat_wf, 
all_wf, 
is-exception_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
sqequalRule, 
hypothesis, 
exceptionCompactness, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
voidElimination, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
lambdaEquality, 
applyEquality, 
intEquality, 
natural_numberEquality, 
independent_isectElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[G,g:Base].    \mneg{}is-exception(G  fix(g))  supposing  \mforall{}j:\mBbbN{}.  (\mneg{}is-exception(G  (g\^{}j  \mbot{})))
Date html generated:
2016_05_14-AM-06_09_55
Last ObjectModification:
2016_01_14-PM-07_50_08
Theory : partial_1
Home
Index