Nuprl Lemma : base-equal-partial
∀[A:Type]
  ∀[a,b:Base].
    a = b ∈ partial(A) supposing (((a)↓ 
⇐⇒ (b)↓) ∧ a = b ∈ A supposing (a)↓) ∧ (¬is-exception(a)) ∧ (¬is-exception(b)) 
  supposing value-type(A)
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
value-type: value-type(T)
, 
has-value: (a)↓
, 
is-exception: is-exception(t)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
and: P ∧ Q
, 
base: Base
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
partial: partial(T)
, 
so_lambda: λ2x y.t[x; y]
, 
base-partial: base-partial(T)
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
per-partial: per-partial(T;x;y)
, 
uiff: uiff(P;Q)
, 
has-value: (a)↓
Lemmas referenced : 
equal-wf-base, 
and_wf, 
iff_wf, 
has-value_wf_base, 
isect_wf, 
not_wf, 
is-exception_wf, 
base_wf, 
value-type_wf, 
quotient-member-eq, 
base-partial_wf, 
per-partial_wf, 
per-partial-equiv_rel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
universeEquality, 
setElimination, 
rename, 
independent_isectElimination, 
productElimination, 
dependent_functionElimination, 
introduction, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
productEquality, 
isectEquality, 
axiomSqleEquality
Latex:
\mforall{}[A:Type]
    \mforall{}[a,b:Base].
        a  =  b 
        supposing  (((a)\mdownarrow{}  \mLeftarrow{}{}\mRightarrow{}  (b)\mdownarrow{})  \mwedge{}  a  =  b  supposing  (a)\mdownarrow{})  \mwedge{}  (\mneg{}is-exception(a))  \mwedge{}  (\mneg{}is-exception(b)) 
    supposing  value-type(A)
Date html generated:
2016_05_14-AM-06_09_42
Last ObjectModification:
2015_12_26-AM-11_52_16
Theory : partial_1
Home
Index