Nuprl Lemma : base-equal-partial

[A:Type]
  ∀[a,b:Base].
    b ∈ partial(A) supposing (((a)↓ ⇐⇒ (b)↓) ∧ b ∈ supposing (a)↓) ∧ is-exception(a)) ∧ is-exception(b)) 
  supposing value-type(A)


Proof




Definitions occuring in Statement :  partial: partial(T) value-type: value-type(T) has-value: (a)↓ is-exception: is-exception(t) uimplies: supposing a uall: [x:A]. B[x] iff: ⇐⇒ Q not: ¬A and: P ∧ Q base: Base universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q implies:  Q partial: partial(T) so_lambda: λ2y.t[x; y] base-partial: base-partial(T) so_apply: x[s1;s2] all: x:A. B[x] cand: c∧ B per-partial: per-partial(T;x;y) uiff: uiff(P;Q) has-value: (a)↓
Lemmas referenced :  equal-wf-base and_wf iff_wf has-value_wf_base isect_wf not_wf is-exception_wf base_wf value-type_wf quotient-member-eq base-partial_wf per-partial_wf per-partial-equiv_rel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality because_Cache universeEquality setElimination rename independent_isectElimination productElimination dependent_functionElimination introduction independent_functionElimination equalityTransitivity equalitySymmetry axiomEquality independent_pairFormation dependent_set_memberEquality productEquality isectEquality axiomSqleEquality

Latex:
\mforall{}[A:Type]
    \mforall{}[a,b:Base].
        a  =  b 
        supposing  (((a)\mdownarrow{}  \mLeftarrow{}{}\mRightarrow{}  (b)\mdownarrow{})  \mwedge{}  a  =  b  supposing  (a)\mdownarrow{})  \mwedge{}  (\mneg{}is-exception(a))  \mwedge{}  (\mneg{}is-exception(b)) 
    supposing  value-type(A)



Date html generated: 2016_05_14-AM-06_09_42
Last ObjectModification: 2015_12_26-AM-11_52_16

Theory : partial_1


Home Index