Nuprl Lemma : termination-equality-base
∀[T:Type]. ∀[x,y:Base].  x = y ∈ T supposing (x)↓ ∧ (x = y ∈ partial(T)) supposing value-type(T)
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
value-type: value-type(T)
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
base: Base
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
partial: partial(T)
, 
quotient: x,y:A//B[x; y]
, 
cand: A c∧ B
, 
label: ...$L... t
, 
guard: {T}
, 
member: t ∈ T
, 
prop: ℙ
, 
per-partial: per-partial(T;x;y)
Lemmas referenced : 
base-partial_wf, 
per-partial_wf, 
has-value_wf_base, 
partial_wf, 
istype-base, 
value-type_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
cut, 
hypothesis, 
pertypeElimination, 
promote_hyp, 
Error :productIsType, 
Error :equalityIstype, 
Error :universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalBase, 
equalitySymmetry, 
because_Cache, 
instantiate, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}[T:Type].  \mforall{}[x,y:Base].    x  =  y  supposing  (x)\mdownarrow{}  \mwedge{}  (x  =  y)  supposing  value-type(T)
Date html generated:
2019_06_20-PM-00_33_53
Last ObjectModification:
2018_12_22-PM-01_07_43
Theory : partial_1
Home
Index