Nuprl Lemma : is-strict-fun

[f:Base]. f ∈ StrictFun supposing f ⊥ ~ ⊥


Proof




Definitions occuring in Statement :  strict-fun: StrictFun bottom: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T apply: a base: Base sqequal: t
Definitions unfolded in proof :  strict-fun: StrictFun
Lemmas referenced :  strict-fun
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity hypothesis

Latex:
\mforall{}[f:Base].  f  \mmember{}  StrictFun  supposing  f  \mbot{}  \msim{}  \mbot{}



Date html generated: 2016_05_15-PM-10_04_22
Last ObjectModification: 2015_12_27-PM-05_16_52

Theory : bar!type


Home Index