Nuprl Lemma : is-strict-fun
∀[f:Base]. f ∈ StrictFun supposing f ⊥ ~ ⊥
Proof
Definitions occuring in Statement : 
strict-fun: StrictFun
, 
bottom: ⊥
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
strict-fun: StrictFun
Lemmas referenced : 
strict-fun
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
hypothesis
Latex:
\mforall{}[f:Base].  f  \mmember{}  StrictFun  supposing  f  \mbot{}  \msim{}  \mbot{}
Date html generated:
2016_05_15-PM-10_04_22
Last ObjectModification:
2015_12_27-PM-05_16_52
Theory : bar!type
Home
Index