Nuprl Lemma : strict-fun
∀[f:Base]. f ∈ partial(Void) ⟶ partial(Void) supposing f ⊥ ~ ⊥
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
bottom: ⊥
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
base: Base
, 
void: Void
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Lemmas referenced : 
partial-void, 
bottom_wf-partial, 
void-value-type, 
partial_wf, 
base_sq, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
functionExtensionality, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isectElimination, 
voidEquality, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
sqequalIntensionalEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[f:Base].  f  \mmember{}  partial(Void)  {}\mrightarrow{}  partial(Void)  supposing  f  \mbot{}  \msim{}  \mbot{}
Date html generated:
2016_05_14-AM-06_11_19
Last ObjectModification:
2015_12_26-AM-11_51_44
Theory : partial_1
Home
Index