Nuprl Lemma : strict-fun

[f:Base]. f ∈ partial(Void) ⟶ partial(Void) supposing f ⊥ ~ ⊥


Proof




Definitions occuring in Statement :  partial: partial(T) bottom: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] base: Base void: Void sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  partial-void bottom_wf-partial void-value-type partial_wf base_sq base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis sqequalRule isectElimination voidEquality independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry sqequalIntensionalEquality isect_memberEquality because_Cache

Latex:
\mforall{}[f:Base].  f  \mmember{}  partial(Void)  {}\mrightarrow{}  partial(Void)  supposing  f  \mbot{}  \msim{}  \mbot{}



Date html generated: 2016_05_14-AM-06_11_19
Last ObjectModification: 2015_12_26-AM-11_51_44

Theory : partial_1


Home Index