Nuprl Lemma : member-bar-void

[x:partial(Void)]. (x ~ ⊥)


Proof




Definitions occuring in Statement :  partial: partial(T) bottom: uall: [x:A]. B[x] void: Void sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  partial-void partial_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis sqequalAxiom isectElimination voidEquality

Latex:
\mforall{}[x:partial(Void)].  (x  \msim{}  \mbot{})



Date html generated: 2016_05_15-PM-10_04_07
Last ObjectModification: 2015_12_27-PM-05_16_56

Theory : bar!type


Home Index