Nuprl Lemma : member-bar-void
∀[x:partial(Void)]. (x ~ ⊥)
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
bottom: ⊥
, 
uall: ∀[x:A]. B[x]
, 
void: Void
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
partial-void, 
partial_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalAxiom, 
isectElimination, 
voidEquality
Latex:
\mforall{}[x:partial(Void)].  (x  \msim{}  \mbot{})
Date html generated:
2016_05_15-PM-10_04_07
Last ObjectModification:
2015_12_27-PM-05_16_56
Theory : bar!type
Home
Index