Nuprl Lemma : inr_eq_bfalse
∀[x:Top]. ((inr x ) = ff ∈ Decision)
Proof
Definitions occuring in Statement : 
decision: Decision
, 
bfalse: ff
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
inr: inr x 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
bfalse: ff
, 
decision: Decision
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
inrEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
introduction, 
extract_by_obid, 
hypothesis, 
universeIsType
Latex:
\mforall{}[x:Top].  ((inr  x  )  =  ff)
Date html generated:
2019_10_15-AM-10_46_51
Last ObjectModification:
2018_09_27-AM-09_35_32
Theory : basic
Home
Index