Nuprl Lemma : simp_lemma1
∀[P:ℙ]. (P supposing False 
⇐⇒ True)
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
false: False
, 
true: True
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
true: True
, 
member: t ∈ T
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
false: False
Lemmas referenced : 
isect_wf, 
false_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
independent_pairFormation, 
lambdaFormation, 
natural_numberEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
voidElimination, 
rename, 
universeIsType, 
universeEquality
Latex:
\mforall{}[P:\mBbbP{}].  (P  supposing  False  \mLeftarrow{}{}\mRightarrow{}  True)
Date html generated:
2019_10_15-AM-10_46_31
Last ObjectModification:
2018_09_27-AM-09_41_14
Theory : basic
Home
Index