Nuprl Lemma : simp_lemma1

[P:ℙ]. (P supposing False ⇐⇒ True)


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] prop: iff: ⇐⇒ Q false: False true: True
Definitions unfolded in proof :  uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q true: True member: t ∈ T prop: uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q false: False
Lemmas referenced :  isect_wf false_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt independent_pairFormation lambdaFormation natural_numberEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality hypothesisEquality voidElimination rename universeIsType universeEquality

Latex:
\mforall{}[P:\mBbbP{}].  (P  supposing  False  \mLeftarrow{}{}\mRightarrow{}  True)



Date html generated: 2019_10_15-AM-10_46_31
Last ObjectModification: 2018_09_27-AM-09_41_14

Theory : basic


Home Index