Nuprl Lemma : dep-isect-wf

A:Type. ∀B:A ⟶ Type.  (x:A ⋂ B[x] ∈ Type)


Proof




Definitions occuring in Statement :  dep-isect: x:A ⋂ B[x] so_apply: x[s] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T so_apply: x[s]
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution hypothesis functionEquality cumulativity hypothesisEquality universeEquality dependentIntersectionEquality applyEquality

Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.    (x:A  \mcap{}  B[x]  \mmember{}  Type)



Date html generated: 2016_05_15-PM-02_07_03
Last ObjectModification: 2015_12_27-AM-00_28_08

Theory : dependent!intersection


Home Index