Nuprl Lemma : is-list-approx0

[x:Top]. (is-list-approx(0) ~ ⊥)


Proof




Definitions occuring in Statement :  is-list-approx: is-list-approx(j) bottom: uall: [x:A]. B[x] top: Top apply: a natural_number: $n sqequal: t
Definitions unfolded in proof :  is-list-approx: is-list-approx(j) all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x]
Lemmas referenced :  fun_exp0_lemma strictness-apply top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination isect_memberFormation introduction sqequalAxiom

Latex:
\mforall{}[x:Top].  (is-list-approx(0)  x  \msim{}  \mbot{})



Date html generated: 2016_05_15-PM-10_09_53
Last ObjectModification: 2015_12_27-PM-05_59_13

Theory : eval!all


Home Index