Nuprl Lemma : is-list-approx0
∀[x:Top]. (is-list-approx(0) x ~ ⊥)
Proof
Definitions occuring in Statement : 
is-list-approx: is-list-approx(j)
, 
bottom: ⊥
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
is-list-approx: is-list-approx(j)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
fun_exp0_lemma, 
strictness-apply, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isectElimination, 
isect_memberFormation, 
introduction, 
sqequalAxiom
Latex:
\mforall{}[x:Top].  (is-list-approx(0)  x  \msim{}  \mbot{})
Date html generated:
2016_05_15-PM-10_09_53
Last ObjectModification:
2015_12_27-PM-05_59_13
Theory : eval!all
Home
Index