Nuprl Lemma : islist_wf

[t:Base]. (islist(t) ∈ ℙ)


Proof




Definitions occuring in Statement :  islist: islist(t) uall: [x:A]. B[x] prop: member: t ∈ T base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T islist: islist(t)
Lemmas referenced :  base_wf has-value_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin baseApply closedConclusion baseClosed hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[t:Base].  (islist(t)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-10_07_15
Last ObjectModification: 2016_01_16-PM-04_08_44

Theory : eval!all


Home Index