Nuprl Lemma : islist_wf
∀[t:Base]. (islist(t) ∈ ℙ)
Proof
Definitions occuring in Statement : 
islist: islist(t)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
islist: islist(t)
Lemmas referenced : 
base_wf, 
has-value_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[t:Base].  (islist(t)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-10_07_15
Last ObjectModification:
2016_01_16-PM-04_08_44
Theory : eval!all
Home
Index