Nuprl Lemma : ispair-bool-if-bunion-unit-prod
∀[t:Unit ⋃ (Top × Top)]. (ispair(t) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
b-union: A ⋃ B
, 
bfalse: ff
, 
btrue: tt
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
ispair: if z is a pair then a otherwise b
, 
unit: Unit
, 
member: t ∈ T
, 
product: x:A × B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
ispair_wf_listunion, 
top_wf, 
b-union_wf, 
unit_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality
Latex:
\mforall{}[t:Unit  \mcup{}  (Top  \mtimes{}  Top)].  (ispair(t)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_15-PM-10_09_33
Last ObjectModification:
2015_12_27-PM-05_59_24
Theory : eval!all
Home
Index