Nuprl Lemma : product-subtype-co-list
∀[T:Type]. ((T × colist(T)) ⊆r colist(T))
Proof
Definitions occuring in Statement : 
colist: colist(T)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
Lemmas referenced : 
subtype_rel_transitivity, 
colist_wf, 
b-union_wf, 
unit_wf2, 
subtype_rel_b-union-right, 
istype-universe, 
colist-ext
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
because_Cache, 
sqequalRule, 
axiomEquality, 
instantiate, 
universeEquality, 
productElimination
Latex:
\mforall{}[T:Type].  ((T  \mtimes{}  colist(T))  \msubseteq{}r  colist(T))
Date html generated:
2019_10_16-AM-11_38_09
Last ObjectModification:
2019_06_26-PM-04_07_05
Theory : eval!all
Home
Index