Nuprl Lemma : product-subtype-co-list

[T:Type]. ((T × colist(T)) ⊆colist(T))


Proof




Definitions occuring in Statement :  colist: colist(T) subtype_rel: A ⊆B uall: [x:A]. B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B ext-eq: A ≡ B and: P ∧ Q
Lemmas referenced :  subtype_rel_transitivity colist_wf b-union_wf unit_wf2 subtype_rel_b-union-right istype-universe colist-ext
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality hypothesis independent_isectElimination because_Cache sqequalRule axiomEquality instantiate universeEquality productElimination

Latex:
\mforall{}[T:Type].  ((T  \mtimes{}  colist(T))  \msubseteq{}r  colist(T))



Date html generated: 2019_10_16-AM-11_38_09
Last ObjectModification: 2019_06_26-PM-04_07_05

Theory : eval!all


Home Index