Nuprl Lemma : unit-subtype-co-list
∀[T:Type]. (Unit ⊆r colist(T))
Proof
Definitions occuring in Statement : 
colist: colist(T)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
subtype_rel_transitivity, 
unit_wf2, 
b-union_wf, 
colist_wf, 
subtype_rel_b-union-left, 
co-list-subtype2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
productEquality, 
hypothesisEquality, 
independent_isectElimination, 
because_Cache, 
sqequalRule, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  (Unit  \msubseteq{}r  colist(T))
Date html generated:
2016_05_15-PM-10_09_07
Last ObjectModification:
2015_12_27-PM-06_00_41
Theory : eval!all
Home
Index