Nuprl Lemma : unit-subtype-co-list

[T:Type]. (Unit ⊆colist(T))


Proof




Definitions occuring in Statement :  colist: colist(T) subtype_rel: A ⊆B uall: [x:A]. B[x] unit: Unit universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B
Lemmas referenced :  subtype_rel_transitivity unit_wf2 b-union_wf colist_wf subtype_rel_b-union-left co-list-subtype2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis productEquality hypothesisEquality independent_isectElimination because_Cache sqequalRule axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  (Unit  \msubseteq{}r  colist(T))



Date html generated: 2016_05_15-PM-10_09_07
Last ObjectModification: 2015_12_27-PM-06_00_41

Theory : eval!all


Home Index