Step
*
2
1
of Lemma
fpf-contains-union-join-left2
1. [A] : Type
2. [B] : A ā¶ Type
3. eq : EqDecider(A)
4. f : a:A fp-> B[a] List
5. h : a:A fp-> B[a] List
6. g : a:A fp-> B[a] List
7. R : āa:A. ((B[a] List) ā¶ B[a] ā¶ š¹)
8. āx:A. ((āx ā dom(h))
ā ((āx ā dom(f)) cā§ h(x) ā f(x)))
9. x : A
10. āx ā dom(h)
11. āx ā dom(f)
12. āi:ā||h(x)||. (h(x)[i] ā f(x))
13. i : ā||h(x)||
14. (h(x)[i] ā f(x))
15. āa:B[x]. ((a ā f(x)?[])
ā (a ā fpf-union(f;g;eq;R;x)))
ā¢ (h(x)[i] ā f(x)?[])
BY
{ (Unfold `fpf-cap` 0 THEN SplitOnConclITE THEN Auto)ā
}
Latex:
Latex:
1. [A] : Type
2. [B] : A {}\mrightarrow{} Type
3. eq : EqDecider(A)
4. f : a:A fp-> B[a] List
5. h : a:A fp-> B[a] List
6. g : a:A fp-> B[a] List
7. R : \mcap{}a:A. ((B[a] List) {}\mrightarrow{} B[a] {}\mrightarrow{} \mBbbB{})
8. \mforall{}x:A. ((\muparrow{}x \mmember{} dom(h)) {}\mRightarrow{} ((\muparrow{}x \mmember{} dom(f)) c\mwedge{} h(x) \msubseteq{} f(x)))
9. x : A
10. \muparrow{}x \mmember{} dom(h)
11. \muparrow{}x \mmember{} dom(f)
12. \mforall{}i:\mBbbN{}||h(x)||. (h(x)[i] \mmember{} f(x))
13. i : \mBbbN{}||h(x)||
14. (h(x)[i] \mmember{} f(x))
15. \mforall{}a:B[x]. ((a \mmember{} f(x)?[]) {}\mRightarrow{} (a \mmember{} fpf-union(f;g;eq;R;x)))
\mvdash{} (h(x)[i] \mmember{} f(x)?[])
By
Latex:
(Unfold `fpf-cap` 0 THEN SplitOnConclITE THEN Auto)\mcdot{}
Home
Index