Step
*
1
1
of Lemma
fpf-join-assoc
.....subterm..... T:t
1:n
1. A : Type
2. B : A ⟶ Type
3. eq : EqDecider(A)
4. d : A List
5. f1 : a:{a:A| (a ∈ d)} ⟶ B[a]
6. d1 : A List
7. g1 : a:{a:A| (a ∈ d1)} ⟶ B[a]
8. d2 : A List
9. h1 : a:{a:A| (a ∈ d2)} ⟶ B[a]
⊢ (λt.((¬bt ∈b d) ∧b (¬bt ∈b d1))) = (λa.(¬ba ∈b d @ filter(λa.(¬ba ∈b d);d1))) ∈ ({x:A| (x ∈ d2)} ⟶ 𝔹)
BY
{ ((EqCD THENA Auto)
THEN D -1
THEN (RWO "deq-member-append" 0 THENA Auto)
THEN BoolCase ⌜t ∈b d⌝⋅
THEN Auto
THEN EqCDA) }
1
.....subterm..... T:t
1:n
1. A : Type
2. B : A ⟶ Type
3. eq : EqDecider(A)
4. d : A List
5. f1 : a:{a:A| (a ∈ d)} ⟶ B[a]
6. d1 : A List
7. g1 : a:{a:A| (a ∈ d1)} ⟶ B[a]
8. d2 : A List
9. h1 : a:{a:A| (a ∈ d2)} ⟶ B[a]
10. t : A
11. ¬(t ∈ d)
12. (t ∈ d2)
⊢ t ∈b d1 = t ∈b filter(λa.(¬ba ∈b d);d1)
Latex:
Latex:
.....subterm..... T:t
1:n
1. A : Type
2. B : A {}\mrightarrow{} Type
3. eq : EqDecider(A)
4. d : A List
5. f1 : a:\{a:A| (a \mmember{} d)\} {}\mrightarrow{} B[a]
6. d1 : A List
7. g1 : a:\{a:A| (a \mmember{} d1)\} {}\mrightarrow{} B[a]
8. d2 : A List
9. h1 : a:\{a:A| (a \mmember{} d2)\} {}\mrightarrow{} B[a]
\mvdash{} (\mlambda{}t.((\mneg{}\msubb{}t \mmember{}\msubb{} d) \mwedge{}\msubb{} (\mneg{}\msubb{}t \mmember{}\msubb{} d1))) = (\mlambda{}a.(\mneg{}\msubb{}a \mmember{}\msubb{} d @ filter(\mlambda{}a.(\mneg{}\msubb{}a \mmember{}\msubb{} d);d1)))
By
Latex:
((EqCD THENA Auto)
THEN D -1
THEN (RWO "deq-member-append" 0 THENA Auto)
THEN BoolCase \mkleeneopen{}t \mmember{}\msubb{} d\mkleeneclose{}\mcdot{}
THEN Auto
THEN EqCDA)
Home
Index