Nuprl Lemma : fpf-join-assoc
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[eq:EqDecider(A)]. ∀[f,g,h:a:A fp-> B[a]].  (f ⊕ g ⊕ h = f ⊕ g ⊕ h ∈ a:A fp-> B[a])
Proof
Definitions occuring in Statement : 
fpf-join: f ⊕ g, 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
fpf-join: f ⊕ g, 
fpf: a:A fp-> B[a], 
fpf-ap: f(x), 
fpf-cap: f(x)?z, 
fpf-dom: x ∈ dom(f), 
uall: ∀[x:A]. B[x], 
pi1: fst(t), 
pi2: snd(t), 
member: t ∈ T, 
prop: ℙ, 
so_apply: x[s], 
squash: ↓T, 
all: ∀x:A. B[x], 
true: True, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
bor: p ∨bq, 
bfalse: ff, 
band: p ∧b q, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
assert: ↑b, 
false: False, 
not: ¬A, 
rev_implies: P ⇐ Q, 
cand: A c∧ B
Lemmas referenced : 
l_member_wf, 
list_wf, 
deq_wf, 
istype-universe, 
append_assoc, 
append_wf, 
squash_wf, 
true_wf, 
filter_append, 
bnot_wf, 
deq-member_wf, 
filter_wf5, 
filter_filter, 
bool_wf, 
deq-member-append, 
eqtt_to_assert, 
assert-deq-member, 
bfalse_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
iff_imp_equal_bool, 
istype-assert, 
iff_transitivity, 
assert_wf, 
not_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
istype-void, 
member_filter, 
member_append
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
productElimination, 
thin, 
dependent_pairEquality_alt, 
functionIsType, 
setIsType, 
because_Cache, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
setElimination, 
rename, 
productIsType, 
inhabitedIsType, 
instantiate, 
universeEquality, 
Error :memTop, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation_alt, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
cumulativity, 
voidElimination, 
independent_pairFormation, 
functionExtensionality_alt, 
inlFormation_alt, 
unionIsType, 
inrFormation_alt, 
dependent_set_memberEquality_alt
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f,g,h:a:A  fp->  B[a]].    (f  \moplus{}  g  \moplus{}  h  =  f  \moplus{}  g  \moplus{}  h)
Date html generated:
2020_05_20-AM-09_02_33
Last ObjectModification:
2020_01_09-AM-00_05_17
Theory : finite!partial!functions
Home
Index