Nuprl Lemma : deq-member-append

[A:Type]. ∀[eq:EqDecider(A)]. ∀[L1,L2:A List]. ∀[x:A].  (x ∈b L1 L2 x ∈b L1 ∨bx ∈b L2)


Proof




Definitions occuring in Statement :  deq-member: x ∈b L append: as bs list: List deq: EqDecider(T) bor: p ∨bq uall: [x:A]. B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q implies:  Q all: x:A. B[x] prop: rev_implies:  Q sq_type: SQType(T) guard: {T}
Lemmas referenced :  subtype_base_sq bool_subtype_base iff_imp_equal_bool deq-member_wf append_wf bor_wf iff_transitivity assert_wf or_wf l_member_wf iff_weakening_uiff assert_of_bor assert-deq-member member_append list_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination hypothesis hypothesisEquality independent_pairFormation lambdaFormation independent_functionElimination dependent_functionElimination orFunctionality productElimination equalityTransitivity equalitySymmetry sqequalAxiom sqequalRule isect_memberEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[L1,L2:A  List].  \mforall{}[x:A].    (x  \mmember{}\msubb{}  L1  @  L2  \msim{}  x  \mmember{}\msubb{}  L1  \mvee{}\msubb{}x  \mmember{}\msubb{}  L2)



Date html generated: 2016_05_14-AM-06_53_26
Last ObjectModification: 2015_12_26-PM-00_20_57

Theory : list_0


Home Index