Step
*
1
of Lemma
fpf-normalize-dom
1. A : Type
2. eq : EqDecider(A)
3. B : A ⟶ Type
4. d : A List
5. g1 : x:{x:A| (x ∈ d)} ⟶ B[x]
6. x : A
7. G : Top
⊢ x ∈b fst(reduce(λx,f. <[x / filter(λa.(¬b((eq x a) ∨bff));fst(f))], λa.<[x], λx@0.(G x)>(a)?f(a)>;<[], λx.⋅>;d)) ~ x ∈\000Cb d
BY
{ Subst ⌜fst(reduce(λx,f. <[x / filter(λa.(¬b((eqof(eq) x a) ∨bff));fst(f))], λa.<[x], λx@0.(G x)>(a)?f(a)>;<[], λx.⋅>;d\000C)) ~ reduce(λx,l. [x / filter(λa.(¬b((eqof(eq) x a) ∨bff));l)];[];d)⌝ 0⋅ }
1
.....equality.....
1. A : Type
2. eq : EqDecider(A)
3. B : A ⟶ Type
4. d : A List
5. g1 : x:{x:A| (x ∈ d)} ⟶ B[x]
6. x : A
7. G : Top
⊢ fst(reduce(λx,f. <[x / filter(λa.(¬b((eqof(eq) x a) ∨bff));fst(f))], λa.<[x], λx@0.(G x)>(a)?f(a)>;<[], λx.⋅>;d)) ~ re\000Cduce(λx,l. [x / filter(λa.(¬b((eqof(eq) x a) ∨bff));l)];[];d)
2
1. A : Type
2. eq : EqDecider(A)
3. B : A ⟶ Type
4. d : A List
5. g1 : x:{x:A| (x ∈ d)} ⟶ B[x]
6. x : A
7. G : Top
⊢ x ∈b fst(reduce(λx,f. <[x / filter(λa.(¬b((eq x a) ∨bff));fst(f))], λa.<[x], λx@0.(G x)>(a)?f(a)>;<[], λx.⋅>;d)) ~ x ∈\000Cb d
Latex:
Latex:
1. A : Type
2. eq : EqDecider(A)
3. B : A {}\mrightarrow{} Type
4. d : A List
5. g1 : x:\{x:A| (x \mmember{} d)\} {}\mrightarrow{} B[x]
6. x : A
7. G : Top
\mvdash{} x \mmember{}\msubb{} fst(reduce(\mlambda{}x,f. <[x / filter(\mlambda{}a.(\mneg{}\msubb{}((eq x a) \mvee{}\msubb{}ff));fst(f))]
, \mlambda{}a.<[x], \mlambda{}x@0.(G x)>(a)?f(a)
><[], \mlambda{}x.\mcdot{}>d)) \msim{} x \mmember{}\msubb{} d
By
Latex:
Subst \mkleeneopen{}fst(reduce(\mlambda{}x,f. <[x / filter(\mlambda{}a.(\mneg{}\msubb{}((eqof(eq) x a) \mvee{}\msubb{}ff));fst(f))]
, \mlambda{}a.<[x], \mlambda{}x@0.(G x)>(a)?f(a)
><[], \mlambda{}x.\mcdot{}>d)) \msim{} reduce(\mlambda{}x,l. [x / filter(\mlambda{}a.(\mneg{}\msubb{}((eqof(eq) x a) \mvee{}\msubb{}ff));l)]\000C;[];d)\mkleeneclose{} 0\mcdot{}
Home
Index