Nuprl Lemma : fpf-normalize-dom
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ⟶ Type]. ∀[g:x:A fp-> B[x]]. ∀[x:A].  (x ∈ dom(fpf-normalize(eq;g)) ~ x ∈ dom(g))
Proof
Definitions occuring in Statement : 
fpf-normalize: fpf-normalize(eq;g), 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type, 
sqequal: s ~ t
Definitions unfolded in proof : 
fpf: a:A fp-> B[a], 
fpf-dom: x ∈ dom(f), 
fpf-normalize: fpf-normalize(eq;g), 
pi2: snd(t), 
pi1: fst(t), 
fpf-empty: ⊗, 
fpf-single: x : v, 
fpf-join: f ⊕ g, 
append: as @ bs, 
all: ∀x:A. B[x], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
member: t ∈ T, 
top: Top, 
so_apply: x[s1;s2;s3], 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nat: ℕ, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
guard: {T}, 
or: P ∨ Q, 
cons: [a / b], 
colength: colength(L), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
decidable: Dec(P), 
nil: [], 
it: ⋅, 
sq_type: SQType(T), 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
deq: EqDecider(T), 
bool: 𝔹, 
unit: Unit, 
btrue: tt, 
eqof: eqof(d), 
uiff: uiff(P;Q), 
bor: p ∨bq, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
assert: ↑b
Lemmas referenced : 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
deq_member_cons_lemma, 
deq_member_nil_lemma, 
top_wf, 
equal_wf, 
fpf_wf, 
deq_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
equal-wf-T-base, 
nat_wf, 
colength_wf_list, 
less_than_transitivity1, 
less_than_irreflexivity, 
list_wf, 
list-cases, 
reduce_nil_lemma, 
product_subtype_list, 
spread_cons_lemma, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
le_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
decidable__equal_int, 
reduce_cons_lemma, 
bool_wf, 
uiff_transitivity, 
assert_wf, 
eqtt_to_assert, 
safe-assert-deq, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
bool_subtype_base, 
iff_imp_equal_bool, 
deq-member_wf, 
filter_wf5, 
bor_wf, 
bfalse_wf, 
l_member_wf, 
member_filter_2, 
eqof_wf, 
member_filter, 
or_wf, 
false_wf, 
assert_of_bor, 
or_false_r, 
assert-deq-member, 
iff_wf
Rules used in proof : 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
productElimination, 
thin, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
lambdaFormation, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
hypothesisEquality, 
independent_functionElimination, 
because_Cache, 
cumulativity, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
functionEquality, 
universeEquality, 
isect_memberFormation, 
sqequalAxiom, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
applyLambdaEquality, 
dependent_set_memberEquality, 
addEquality, 
baseClosed, 
instantiate, 
imageElimination, 
equalityElimination, 
addLevel, 
impliesFunctionality, 
levelHypothesis, 
setEquality, 
orFunctionality, 
andLevelFunctionality, 
impliesLevelFunctionality
Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[g:x:A  fp->  B[x]].  \mforall{}[x:A].
    (x  \mmember{}  dom(fpf-normalize(eq;g))  \msim{}  x  \mmember{}  dom(g))
Date html generated:
2018_05_21-PM-09_32_18
Last ObjectModification:
2018_02_09-AM-10_26_58
Theory : finite!partial!functions
Home
Index