Nuprl Lemma : fpf-normalize-dom

[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ⟶ Type]. ∀[g:x:A fp-> B[x]]. ∀[x:A].  (x ∈ dom(fpf-normalize(eq;g)) x ∈ dom(g))


Proof




Definitions occuring in Statement :  fpf-normalize: fpf-normalize(eq;g) fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  fpf: a:A fp-> B[a] fpf-dom: x ∈ dom(f) fpf-normalize: fpf-normalize(eq;g) pi2: snd(t) pi1: fst(t) fpf-empty: fpf-single: v fpf-join: f ⊕ g append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) member: t ∈ T top: Top so_apply: x[s1;s2;s3] implies:  Q uall: [x:A]. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] nat: false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A and: P ∧ Q subtype_rel: A ⊆B guard: {T} or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) deq: EqDecider(T) bool: 𝔹 unit: Unit btrue: tt eqof: eqof(d) uiff: uiff(P;Q) bor: p ∨bq ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q assert: b
Lemmas referenced :  list_ind_cons_lemma list_ind_nil_lemma deq_member_cons_lemma deq_member_nil_lemma top_wf equal_wf fpf_wf deq_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list_wf list-cases reduce_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int reduce_cons_lemma bool_wf uiff_transitivity assert_wf eqtt_to_assert safe-assert-deq iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot bool_subtype_base iff_imp_equal_bool deq-member_wf filter_wf5 bor_wf bfalse_wf l_member_wf member_filter_2 eqof_wf member_filter or_wf false_wf assert_of_bor or_false_r assert-deq-member iff_wf
Rules used in proof :  sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity productElimination thin sqequalRule cut introduction extract_by_obid dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis lambdaFormation isectElimination equalityTransitivity equalitySymmetry hypothesisEquality independent_functionElimination because_Cache cumulativity lambdaEquality applyEquality functionExtensionality functionEquality universeEquality isect_memberFormation sqequalAxiom setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll unionElimination promote_hyp hypothesis_subsumption applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination equalityElimination addLevel impliesFunctionality levelHypothesis setEquality orFunctionality andLevelFunctionality impliesLevelFunctionality

Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[g:x:A  fp->  B[x]].  \mforall{}[x:A].
    (x  \mmember{}  dom(fpf-normalize(eq;g))  \msim{}  x  \mmember{}  dom(g))



Date html generated: 2018_05_21-PM-09_32_18
Last ObjectModification: 2018_02_09-AM-10_26_58

Theory : finite!partial!functions


Home Index