Nuprl Lemma : WFTRO_wf

WFTRO{i:l}() ∈ 𝕌'


Proof




Definitions occuring in Statement :  WFTRO: WFTRO{i:l}() member: t ∈ T universe: Type
Definitions unfolded in proof :  WFTRO: WFTRO{i:l}() member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] infix_ap: y so_apply: x[s1;s2]
Lemmas referenced :  DCC_wf trans_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep productEquality universeEquality functionEquality cumulativity hypothesisEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality applyEquality

Latex:
WFTRO\{i:l\}()  \mmember{}  \mBbbU{}'



Date html generated: 2016_05_15-PM-04_15_09
Last ObjectModification: 2015_12_27-PM-02_58_10

Theory : general


Home Index