Nuprl Lemma : WFTRO_wf
WFTRO{i:l}() ∈ 𝕌'
Proof
Definitions occuring in Statement :
WFTRO: WFTRO{i:l}()
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
WFTRO: WFTRO{i:l}()
,
member: t ∈ T
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x y.t[x; y]
,
infix_ap: x f y
,
so_apply: x[s1;s2]
Lemmas referenced :
DCC_wf,
trans_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
productEquality,
universeEquality,
functionEquality,
cumulativity,
hypothesisEquality,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesis,
lambdaEquality,
applyEquality
Latex:
WFTRO\{i:l\}() \mmember{} \mBbbU{}'
Date html generated:
2016_05_15-PM-04_15_09
Last ObjectModification:
2015_12_27-PM-02_58_10
Theory : general
Home
Index