Nuprl Lemma : WFTRO_wf
WFTRO{i:l}() ∈ 𝕌'
Proof
Definitions occuring in Statement : 
WFTRO: WFTRO{i:l}()
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
WFTRO: WFTRO{i:l}()
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
Lemmas referenced : 
DCC_wf, 
trans_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
productEquality, 
universeEquality, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
applyEquality
Latex:
WFTRO\{i:l\}()  \mmember{}  \mBbbU{}'
Date html generated:
2016_05_15-PM-04_15_09
Last ObjectModification:
2015_12_27-PM-02_58_10
Theory : general
Home
Index