Nuprl Lemma : DCC_wf

[T:Type]. ∀[<:T ⟶ T ⟶ ℙ].  (DCC(T;<) ∈ ℙ)


Proof




Definitions occuring in Statement :  DCC: DCC(T;<) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T DCC: DCC(T;<) so_lambda: λ2x.t[x] prop: nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q so_apply: x[s]
Lemmas referenced :  le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties infix_ap_wf not_wf nat_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis cumulativity hypothesisEquality lambdaEquality because_Cache instantiate universeEquality applyEquality dependent_set_memberEquality addEquality setElimination rename natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[<:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (DCC(T;<)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-04_13_04
Last ObjectModification: 2016_01_16-AM-11_06_35

Theory : general


Home Index