Nuprl Lemma : assert-dectt

[p:ℙ]. ∀d:Dec(p). (↑dectt(d) ⇐⇒ p)


Proof




Definitions occuring in Statement :  dectt: dectt(d) assert: b decidable: Dec(P) uall: [x:A]. B[x] prop: all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] dectt: dectt(d) decidable: Dec(P) or: P ∨ Q isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: rev_implies:  Q true: True bfalse: ff false: False not: ¬A
Lemmas referenced :  true_wf false_wf decidable_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution unionElimination thin sqequalRule independent_pairFormation hypothesis cut lemma_by_obid natural_numberEquality hypothesisEquality voidElimination independent_functionElimination isectElimination universeEquality

Latex:
\mforall{}[p:\mBbbP{}].  \mforall{}d:Dec(p).  (\muparrow{}dectt(d)  \mLeftarrow{}{}\mRightarrow{}  p)



Date html generated: 2016_05_15-PM-03_58_15
Last ObjectModification: 2015_12_27-PM-03_07_29

Theory : general


Home Index