Nuprl Lemma : assert-dectt
∀[p:ℙ]. ∀d:Dec(p). (↑dectt(d) ⇐⇒ p)
Proof
Definitions occuring in Statement : 
dectt: dectt(d), 
assert: ↑b, 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
dectt: dectt(d), 
decidable: Dec(P), 
or: P ∨ Q, 
isl: isl(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
true: True, 
bfalse: ff, 
false: False, 
not: ¬A
Lemmas referenced : 
true_wf, 
false_wf, 
decidable_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
sqequalRule, 
independent_pairFormation, 
hypothesis, 
cut, 
lemma_by_obid, 
natural_numberEquality, 
hypothesisEquality, 
voidElimination, 
independent_functionElimination, 
isectElimination, 
universeEquality
Latex:
\mforall{}[p:\mBbbP{}].  \mforall{}d:Dec(p).  (\muparrow{}dectt(d)  \mLeftarrow{}{}\mRightarrow{}  p)
Date html generated:
2016_05_15-PM-03_58_15
Last ObjectModification:
2015_12_27-PM-03_07_29
Theory : general
Home
Index