Nuprl Lemma : church-true_wf
∀[T:Type]. (church-true() ∈ T ⟶ Top ⟶ T)
Proof
Definitions occuring in Statement : 
church-true: church-true()
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
church-true: church-true()
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  (church-true()  \mmember{}  T  {}\mrightarrow{}  Top  {}\mrightarrow{}  T)
Date html generated:
2016_05_15-PM-03_22_03
Last ObjectModification:
2015_12_27-PM-01_04_40
Theory : general
Home
Index