Step
*
1
1
2
of Lemma
combinations-n-intersecting
1. n : ℕ
2. t : ℕ
3. A : Type
4. A ~ ℕ(n * t) + 1
5. Ls : Combination(((n - 1) * t) + 1;A) List
6. ||Ls|| = n ∈ ℤ
7. 0 < (n * t) + 1
8. ∀x,y:A. Dec(x = y ∈ A)
9. u : Combination(((n - 1) * t) + 1;A)
10. v : Combination(((n - 1) * t) + 1;A) List
11. ∀k:ℕ. ({a:A| (∃L∈v. ¬(a ∈ L))} ~ ℕk
⇒ (k ≤ (||v|| * t)))
⊢ ∀k:ℕ. ({a:A| (∃L∈[u / v]. ¬(a ∈ L))} ~ ℕk
⇒ (k ≤ ((||v|| + 1) * t)))
BY
{ Auto }
1
1. n : ℕ
2. t : ℕ
3. A : Type
4. A ~ ℕ(n * t) + 1
5. Ls : Combination(((n - 1) * t) + 1;A) List
6. ||Ls|| = n ∈ ℤ
7. 0 < (n * t) + 1
8. ∀x,y:A. Dec(x = y ∈ A)
9. u : Combination(((n - 1) * t) + 1;A)
10. v : Combination(((n - 1) * t) + 1;A) List
11. ∀k:ℕ. ({a:A| (∃L∈v. ¬(a ∈ L))} ~ ℕk
⇒ (k ≤ (||v|| * t)))
12. k : ℕ
13. {a:A| (∃L∈[u / v]. ¬(a ∈ L))} ~ ℕk
⊢ k ≤ ((||v|| + 1) * t)
Latex:
Latex:
1. n : \mBbbN{}
2. t : \mBbbN{}
3. A : Type
4. A \msim{} \mBbbN{}(n * t) + 1
5. Ls : Combination(((n - 1) * t) + 1;A) List
6. ||Ls|| = n
7. 0 < (n * t) + 1
8. \mforall{}x,y:A. Dec(x = y)
9. u : Combination(((n - 1) * t) + 1;A)
10. v : Combination(((n - 1) * t) + 1;A) List
11. \mforall{}k:\mBbbN{}. (\{a:A| (\mexists{}L\mmember{}v. \mneg{}(a \mmember{} L))\} \msim{} \mBbbN{}k {}\mRightarrow{} (k \mleq{} (||v|| * t)))
\mvdash{} \mforall{}k:\mBbbN{}. (\{a:A| (\mexists{}L\mmember{}[u / v]. \mneg{}(a \mmember{} L))\} \msim{} \mBbbN{}k {}\mRightarrow{} (k \mleq{} ((||v|| + 1) * t)))
By
Latex:
Auto
Home
Index