Nuprl Lemma : combinations-n-intersecting

n,t:ℕ.  ∀[A:Type]. (A ~ ℕ(n t)  n-intersecting(A;Combination(((n 1) t) 1;A);n))


Proof




Definitions occuring in Statement :  n-intersecting: n-intersecting(A;T;n) combination: Combination(n;T) equipollent: B int_seg: {i..j-} nat: uall: [x:A]. B[x] all: x:A. B[x] implies:  Q multiply: m subtract: m add: m natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q n-intersecting: n-intersecting(A;T;n) member: t ∈ T nat: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: guard: {T} le: A ≤ B cons: [a b] less_than': less_than'(a;b) colength: colength(L) nil: [] it: sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff: ⇐⇒ Q rev_implies:  Q l_exists: (∃x∈L. P[x]) int_seg: {i..j-} lelt: i ≤ j < k combination: Combination(n;T) sq_stable: SqStable(P) cand: c∧ B respects-equality: respects-equality(S;T) uiff: uiff(P;Q) nat_plus: + l_all: (∀x∈L.P[x])
Lemmas referenced :  istype-int length_wf_nat combination_wf subtract_wf set_subtype_base le_wf int_subtype_base list_wf equipollent_wf int_seg_wf istype-universe istype-nat mul_bounds_1a nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermMultiply_wf itermVar_wf intformle_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf equipollent-decidable-equal decidable__equal_int_seg ge_wf istype-less_than le_witness_for_triv list-cases length_of_nil_lemma product_subtype_list colength-cons-not-zero colength_wf_list istype-false istype-le subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma spread_cons_lemma decidable__equal_int itermSubtract_wf int_term_value_subtract_lemma decidable__le length_of_cons_lemma equipollent-zero l_exists_wf_nil not_wf l_member_wf int_seg_properties equipollent_functionality_wrt_equipollent equipollent_weakening_ext-eq ext-eq_weakening equipollent-nsub l_exists_wf cons_wf equipollent-partition decidable__l_exists_better-extract decidable__not decidable__l_member sq_stable__le length_wf non_neg_length equipollent-length equipollent-subtract2 equipollent-subtype no_repeats_wf subtype_rel_sets respects-equality-set subtype-respects-equality sq_stable__l_member l_exists_cons multiply-is-int-iff false_wf add-is-int-iff equipollent-non-zero l_all_wf2 decidable__l_all-better-extract not-l_exists select_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt equalityIstype cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality addEquality multiplyEquality setElimination rename because_Cache closedConclusion natural_numberEquality applyEquality sqequalRule intEquality lambdaEquality_alt independent_isectElimination sqequalBase equalitySymmetry universeIsType instantiate universeEquality inhabitedIsType dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation intWeakElimination productElimination equalityTransitivity functionIsTypeImplies promote_hyp hypothesis_subsumption dependent_set_memberEquality_alt applyLambdaEquality imageElimination baseApply baseClosed setEquality setIsType imageMemberEquality cumulativity productIsType functionIsType pointwiseFunctionality

Latex:
\mforall{}n,t:\mBbbN{}.    \mforall{}[A:Type].  (A  \msim{}  \mBbbN{}(n  *  t)  +  1  {}\mRightarrow{}  n-intersecting(A;Combination(((n  -  1)  *  t)  +  1;A);n))



Date html generated: 2019_10_15-AM-11_24_51
Last ObjectModification: 2018_11_30-AM-09_53_14

Theory : general


Home Index