Nuprl Lemma : equipollent-non-zero
∀[T:Type]. ∀n:ℕ+. (T ~ ℕn ⇒ T)
Proof
Definitions occuring in Statement : 
equipollent: A ~ B, 
int_seg: {i..j-}, 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
equipollent: A ~ B, 
exists: ∃x:A. B[x], 
biject: Bij(A;B;f), 
and: P ∧ Q, 
surject: Surj(A;B;f), 
member: t ∈ T, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
prop: ℙ, 
nat_plus: ℕ+, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top
Lemmas referenced : 
nat_plus_wf, 
int_seg_wf, 
equipollent_wf, 
lelt_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_plus_properties, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_functionElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
sqequalRule, 
hypothesis, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
setElimination, 
rename, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
universeEquality, 
introduction
Latex:
\mforall{}[T:Type].  \mforall{}n:\mBbbN{}\msupplus{}.  (T  \msim{}  \mBbbN{}n  {}\mRightarrow{}  T)
Date html generated:
2016_05_14-PM-04_01_48
Last ObjectModification:
2016_01_14-PM-11_06_04
Theory : equipollence!!cardinality!
Home
Index