Nuprl Lemma : equipollent-decidable-equal

[A,B:Type].  (A  (∀x,y:B.  Dec(x y ∈ B))  {∀x,y:A.  Dec(x y ∈ A)})


Proof




Definitions occuring in Statement :  equipollent: B decidable: Dec(P) uall: [x:A]. B[x] guard: {T} all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  guard: {T} equipollent: B uall: [x:A]. B[x] implies:  Q all: x:A. B[x] exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q not: ¬A false: False and: P ∧ Q biject: Bij(A;B;f) inject: Inj(A;B;f)
Lemmas referenced :  all_wf decidable_wf equal_wf exists_wf biject_wf not_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin hypothesisEquality cut lemma_by_obid isectElimination lambdaEquality hypothesis functionEquality universeEquality dependent_functionElimination applyEquality unionElimination inlFormation inrFormation independent_functionElimination equalitySymmetry dependent_set_memberEquality independent_pairFormation setElimination rename setEquality voidElimination

Latex:
\mforall{}[A,B:Type].    (A  \msim{}  B  {}\mRightarrow{}  (\mforall{}x,y:B.    Dec(x  =  y))  {}\mRightarrow{}  \{\mforall{}x,y:A.    Dec(x  =  y)\})



Date html generated: 2016_05_14-PM-03_59_45
Last ObjectModification: 2015_12_26-PM-07_44_44

Theory : equipollence!!cardinality!


Home Index