Nuprl Lemma : equipollent-subtract2

a,b:ℕ.  ∀[T:Type]. (T ~ ℕ (∀[P:T ⟶ ℙ]. ({x:T| P[x]}  ~ ℕ {x:T| ¬P[x]}  ~ ℕb)))


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] not: ¬A implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] subtract: m natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q member: t ∈ T nat: equipollent: B exists: x:A. B[x] so_apply: x[s] subtype_rel: A ⊆B prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q biject: Bij(A;B;f) inject: Inj(A;B;f) uimplies: supposing a guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False surject: Surj(A;B;f) so_lambda: λ2x.t[x]
Lemmas referenced :  equipollent_inversion int_seg_wf equipollent_wf subtype_rel_self istype-universe istype-nat equipollent_functionality_wrt_equipollent2 biject_wf iff_weakening_equal int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than equal_functionality_wrt_subtype_rel2 equipollent-subtract not_wf subtract_wf istype-void
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality setElimination rename because_Cache hypothesis independent_functionElimination productElimination universeIsType setEquality applyEquality sqequalRule instantiate universeEquality functionIsType inhabitedIsType dependent_pairFormation_alt functionExtensionality_alt dependent_set_memberEquality_alt setIsType independent_pairFormation lambdaEquality_alt equalityTransitivity equalitySymmetry independent_isectElimination equalityIstype imageElimination dependent_functionElimination unionElimination approximateComputation int_eqEquality Error :memTop,  voidElimination productIsType applyLambdaEquality imageMemberEquality baseClosed

Latex:
\mforall{}a,b:\mBbbN{}.    \mforall{}[T:Type].  (T  \msim{}  \mBbbN{}a  {}\mRightarrow{}  (\mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  (\{x:T|  P[x]\}    \msim{}  \mBbbN{}b  {}\mRightarrow{}  \{x:T|  \mneg{}P[x]\}    \msim{}  \mBbbN{}a  -  b)))



Date html generated: 2020_05_19-PM-10_00_37
Last ObjectModification: 2020_01_04-PM-08_00_22

Theory : equipollence!!cardinality!


Home Index