Nuprl Lemma : equipollent-subtract

a,b:ℕ.  ∀[P:ℕa ⟶ ℙ]. ({x:ℕa| P[x]}  ~ ℕ {x:ℕa| ¬P[x]}  ~ ℕb)


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] not: ¬A implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] subtract: m natural_number: $n
Definitions unfolded in proof :  prop: subtype_rel: A ⊆B so_apply: x[s] nat: member: t ∈ T implies:  Q uall: [x:A]. B[x] all: x:A. B[x] int_seg: {i..j-} so_lambda: λ2x.t[x] exists: x:A. B[x] equipollent: B or: P ∨ Q decidable: Dec(P) squash: T rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q sq_stable: SqStable(P) bfalse: ff true: True btrue: tt ifthenelse: if then else fi  assert: b isl: isl(x) false: False not: ¬A top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) le: A ≤ B lelt: i ≤ j < k ge: i ≥  guard: {T} sq_type: SQType(T) uimplies: supposing a surject: Surj(A;B;f) biject: Bij(A;B;f) inject: Inj(A;B;f)
Lemmas referenced :  subtype_rel_sets equal_functionality_wrt_subtype_rel2 biject_wf intformand_wf itermSubtract_wf itermAdd_wf int_formula_prop_and_lemma int_term_value_subtract_lemma int_term_value_add_lemma equipollent_functionality_wrt_equipollent equipollent-set equipollent_functionality_wrt_equipollent2 equipollent-nsub decidable_functionality ext-eq_weakening equipollent_weakening_ext-eq equipollent-partition set_wf true_wf false_wf subtype_base_sq set_subtype_base lelt_wf int_subtype_base int_seg_properties nat_properties satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf sq_stable_from_decidable decidable__assert isl_wf exists_wf not_wf squash_wf assert_wf assert_witness all_wf iff_wf decidable__exists_int_seg equal_wf decidable__equal_int equipollent_inversion int_seg_wf equipollent_wf nat_wf
Rules used in proof :  cumulativity functionEquality universeEquality lambdaEquality independent_functionElimination sqequalRule because_Cache applyEquality hypothesis hypothesisEquality rename setElimination natural_numberEquality setEquality thin isectElimination sqequalHypSubstitution lemma_by_obid cut isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution intEquality dependent_functionElimination instantiate productElimination independent_pairEquality baseClosed imageMemberEquality imageElimination independent_pairFormation introduction dependent_pairFormation equalitySymmetry equalityTransitivity unionElimination unionEquality voidElimination computeAll voidEquality isect_memberEquality int_eqEquality independent_isectElimination promote_hyp dependent_set_memberEquality

Latex:
\mforall{}a,b:\mBbbN{}.    \mforall{}[P:\mBbbN{}a  {}\mrightarrow{}  \mBbbP{}].  (\{x:\mBbbN{}a|  P[x]\}    \msim{}  \mBbbN{}b  {}\mRightarrow{}  \{x:\mBbbN{}a|  \mneg{}P[x]\}    \msim{}  \mBbbN{}a  -  b)



Date html generated: 2018_05_21-PM-00_53_29
Last ObjectModification: 2017_12_07-PM-06_29_16

Theory : equipollence!!cardinality!


Home Index