Nuprl Lemma : equipollent-set

[T:Type]. ∀[P:T ⟶ ℙ].  {x:T| P[x]}  {x:T| ↓P[x]} 


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] prop: so_apply: x[s] squash: T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  surject: Surj(A;B;f) so_lambda: λ2x.t[x] implies:  Q all: x:A. B[x] inject: Inj(A;B;f) and: P ∧ Q biject: Bij(A;B;f) subtype_rel: A ⊆B prop: so_apply: x[s] squash: T member: t ∈ T exists: x:A. B[x] equipollent: B uall: [x:A]. B[x]
Lemmas referenced :  biject_wf set_wf equal_wf member_wf squash_wf
Rules used in proof :  functionEquality imageElimination because_Cache applyLambdaEquality hyp_replacement equalitySymmetry lambdaFormation independent_pairFormation universeEquality setEquality cumulativity functionExtensionality applyEquality isectElimination extract_by_obid sqequalHypSubstitution baseClosed imageMemberEquality sqequalRule introduction hypothesis hypothesisEquality dependent_set_memberEquality cut rename thin setElimination lambdaEquality dependent_pairFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    \{x:T|  P[x]\}    \msim{}  \{x:T|  \mdownarrow{}P[x]\} 



Date html generated: 2018_05_21-PM-00_52_43
Last ObjectModification: 2017_12_07-PM-06_30_56

Theory : equipollence!!cardinality!


Home Index