Nuprl Lemma : equipollent-set
∀[T:Type]. ∀[P:T ⟶ ℙ].  {x:T| P[x]}  ~ {x:T| ↓P[x]} 
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
squash: ↓T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
surject: Surj(A;B;f)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
inject: Inj(A;B;f)
, 
and: P ∧ Q
, 
biject: Bij(A;B;f)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_apply: x[s]
, 
squash: ↓T
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
biject_wf, 
set_wf, 
equal_wf, 
member_wf, 
squash_wf
Rules used in proof : 
functionEquality, 
imageElimination, 
because_Cache, 
applyLambdaEquality, 
hyp_replacement, 
equalitySymmetry, 
lambdaFormation, 
independent_pairFormation, 
universeEquality, 
setEquality, 
cumulativity, 
functionExtensionality, 
applyEquality, 
isectElimination, 
extract_by_obid, 
sqequalHypSubstitution, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
introduction, 
hypothesis, 
hypothesisEquality, 
dependent_set_memberEquality, 
cut, 
rename, 
thin, 
setElimination, 
lambdaEquality, 
dependent_pairFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    \{x:T|  P[x]\}    \msim{}  \{x:T|  \mdownarrow{}P[x]\} 
Date html generated:
2018_05_21-PM-00_52_43
Last ObjectModification:
2017_12_07-PM-06_30_56
Theory : equipollence!!cardinality!
Home
Index