Step
*
1
2
of Lemma
combinations-n-intersecting
1. n : ℕ
2. t : ℕ
3. [A] : Type
4. A ~ ℕ(n * t) + 1
5. Ls : Combination(((n - 1) * t) + 1;A) List
6. ||Ls|| = n ∈ ℤ
7. 0 < (n * t) + 1
8. ∀x,y:A.  Dec(x = y ∈ A)
9. ∀Ls:Combination(((n - 1) * t) + 1;A) List. ∀k:ℕ.  ({a:A| (∃L∈Ls. ¬(a ∈ L))}  ~ ℕk 
⇒ (k ≤ (||Ls|| * t)))
⊢ ∃a:A. (∀L∈Ls.(a ∈ L))
BY
{ ((InstLemma `equipollent-partition` [⌜(n * t) + 1⌝;⌜A⌝;⌜λ2a.(∃L∈Ls. ¬(a ∈ L))⌝]⋅ THENA Auto) THEN ExRepD) }
1
1. n : ℕ
2. t : ℕ
3. [A] : Type
4. A ~ ℕ(n * t) + 1
5. Ls : Combination(((n - 1) * t) + 1;A) List
6. ||Ls|| = n ∈ ℤ
7. 0 < (n * t) + 1
8. ∀x,y:A.  Dec(x = y ∈ A)
9. ∀Ls:Combination(((n - 1) * t) + 1;A) List. ∀k:ℕ.  ({a:A| (∃L∈Ls. ¬(a ∈ L))}  ~ ℕk 
⇒ (k ≤ (||Ls|| * t)))
10. i : ℕ
11. j : ℕ
12. ((n * t) + 1) = (i + j) ∈ ℤ
13. {a:A| (∃L∈Ls. ¬(a ∈ L))}  ~ ℕi
14. {a:A| ¬(∃L∈Ls. ¬(a ∈ L))}  ~ ℕj
⊢ ∃a:A. (∀L∈Ls.(a ∈ L))
Latex:
Latex:
1.  n  :  \mBbbN{}
2.  t  :  \mBbbN{}
3.  [A]  :  Type
4.  A  \msim{}  \mBbbN{}(n  *  t)  +  1
5.  Ls  :  Combination(((n  -  1)  *  t)  +  1;A)  List
6.  ||Ls||  =  n
7.  0  <  (n  *  t)  +  1
8.  \mforall{}x,y:A.    Dec(x  =  y)
9.  \mforall{}Ls:Combination(((n  -  1)  *  t)  +  1;A)  List.  \mforall{}k:\mBbbN{}.
          (\{a:A|  (\mexists{}L\mmember{}Ls.  \mneg{}(a  \mmember{}  L))\}    \msim{}  \mBbbN{}k  {}\mRightarrow{}  (k  \mleq{}  (||Ls||  *  t)))
\mvdash{}  \mexists{}a:A.  (\mforall{}L\mmember{}Ls.(a  \mmember{}  L))
By
Latex:
((InstLemma  `equipollent-partition`  [\mkleeneopen{}(n  *  t)  +  1\mkleeneclose{};\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}a.(\mexists{}L\mmember{}Ls.  \mneg{}(a  \mmember{}  L))\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  ExRepD
  )
Home
Index