Step
*
2
2
of Lemma
cyclic-map-equipollent
1. n : ℕ+
2. ∀L:Combination(n - 1;ℕn - 1). ([n - 1 / L] ∈ Combination(n;ℕn))
3. b : cyclic-map(ℕn)
⊢ ∃a:Combination(n - 1;ℕn - 1). (cycle([n - 1 / a]) = b ∈ cyclic-map(ℕn))
BY
{ xxx((InstLemma `orbit-decomp2` [⌜ℕn⌝;⌜b⌝]⋅
THENA (Auto
THEN Try ((BLemma `finite-type-int_seg` THEN Auto))
THEN RepeatFor 2 (DVar `b')
THEN Try (Unhide)
THEN Auto)
)
THEN ExRepD
)xxx }
1
1. n : ℕ+
2. ∀L:Combination(n - 1;ℕn - 1). ([n - 1 / L] ∈ Combination(n;ℕn))
3. b : cyclic-map(ℕn)
4. orbits : ℕn List List
5. (∀o∈orbits.orbit(ℕn;b;o))
6. ∀a:ℕn. (∃orbit∈orbits. (a ∈ orbit))
7. (∀o1,o2∈orbits. l_disjoint(ℕn;o1;o2))
8. no_repeats(ℕn List;orbits)
⊢ ∃a:Combination(n - 1;ℕn - 1). (cycle([n - 1 / a]) = b ∈ cyclic-map(ℕn))
Latex:
Latex:
1. n : \mBbbN{}\msupplus{}
2. \mforall{}L:Combination(n - 1;\mBbbN{}n - 1). ([n - 1 / L] \mmember{} Combination(n;\mBbbN{}n))
3. b : cyclic-map(\mBbbN{}n)
\mvdash{} \mexists{}a:Combination(n - 1;\mBbbN{}n - 1). (cycle([n - 1 / a]) = b)
By
Latex:
xxx((InstLemma `orbit-decomp2` [\mkleeneopen{}\mBbbN{}n\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}]\mcdot{}
THENA (Auto
THEN Try ((BLemma `finite-type-int\_seg` THEN Auto))
THEN RepeatFor 2 (DVar `b')
THEN Try (Unhide)
THEN Auto)
)
THEN ExRepD
)xxx
Home
Index