Nuprl Lemma : cyclic-map-equipollent

n:ℕ+Combination(n 1;ℕ1) cyclic-map(ℕn)


Proof




Definitions occuring in Statement :  cyclic-map: cyclic-map(T) combination: Combination(n;T) equipollent: B int_seg: {i..j-} nat_plus: + all: x:A. B[x] subtract: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T combination: Combination(n;T) and: P ∧ Q uall: [x:A]. B[x] int_seg: {i..j-} lelt: i ≤ j < k nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: cand: c∧ B uiff: uiff(P;Q) so_lambda: λ2x.t[x] so_apply: x[s] l_member: (x ∈ l) subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q subtract: m true: True nat: ge: i ≥  guard: {T} equipollent: B biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) select: L[n] cons: [a b] squash: T less_than: a < b sq_type: SQType(T) cyclic-map: cyclic-map(T) injection: A →⟶ B sq_stable: SqStable(P) l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) orbit: orbit(T;f;L) eq_int: (i =z j) ifthenelse: if then else fi  bfalse: ff compose: g bool: 𝔹 unit: Unit it: btrue: tt cardinality-le: |T| ≤ n append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] no_repeats: no_repeats(T;l)
Lemmas referenced :  nat_plus_wf cons_wf int_seg_wf nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__lt lelt_wf no_repeats_cons no_repeats-strong-subtype strong-subtype-set1 subtract_wf length_of_cons_lemma decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma no_repeats_wf equal_wf length_wf combination_wf l_member_wf subtype_rel_list int_seg_subtype false_wf not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 select_wf nat_properties int_seg_properties cycle_wf2 nat_plus_subtype_nat cyclic-map_wf biject_wf list_extensionality less_than_wf nat_wf cycle-transitive1 le_wf squash_wf true_wf select_cons_tl subtype_rel_self iff_weakening_equal le_weakening2 non_neg_length add-subtract-cancel add_nat_plus subtype_base_sq set_subtype_base int_subtype_base fun_exp_wf zero-add orbit-decomp2 decidable__equal-int_seg finite-type-int_seg sq_stable__inject list_wf orbit_wf cyclic-map-transitive orbit-closed l_all_iff all_wf int_seg_subtype_nat exists_wf inject_wf apply-cycle-member orbit-iterates fun_exp_unroll fun_exp0_lemma eq_int_wf bool_wf equal-wf-T-base assert_wf bnot_wf not_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot rem_rec_case less_than_transitivity2 rem_base_case l_member_decomp list-cardinality-le cardinality-le-no_repeats-length surject_wf cardinality-le-int_seg length_wf_nat list_subtype_base length-append length_of_nil_lemma no_repeats-append append_wf nil_wf l_disjoint_append l_disjoint_singleton list_ind_cons_lemma list_ind_nil_lemma list-set-type2 add-is-int-iff no_repeats-permute no_repeats-sublist append_assoc sublist_append2 cycle-append cycle_wf cycle-injection cycle-transitive2 l_all_wf2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality productElimination isectElimination natural_numberEquality because_Cache equalityTransitivity equalitySymmetry independent_pairFormation hypothesisEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule productEquality applyEquality addEquality minusEquality multiplyEquality applyLambdaEquality imageElimination universeEquality imageMemberEquality baseClosed instantiate cumulativity hyp_replacement functionExtensionality setEquality equalityElimination impliesFunctionality promote_hyp pointwiseFunctionality baseApply closedConclusion isect_memberFormation functionEquality allFunctionality

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  Combination(n  -  1;\mBbbN{}n  -  1)  \msim{}  cyclic-map(\mBbbN{}n)



Date html generated: 2018_05_21-PM-08_26_31
Last ObjectModification: 2018_05_19-PM-05_02_43

Theory : general


Home Index