Nuprl Lemma : cyclic-map-equipollent
∀n:ℕ+. Combination(n - 1;ℕn - 1) ~ cyclic-map(ℕn)
Proof
Definitions occuring in Statement : 
cyclic-map: cyclic-map(T)
, 
combination: Combination(n;T)
, 
equipollent: A ~ B
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
subtract: n - m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
combination: Combination(n;T)
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
l_member: (x ∈ l)
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
true: True
, 
nat: ℕ
, 
ge: i ≥ j 
, 
guard: {T}
, 
equipollent: A ~ B
, 
biject: Bij(A;B;f)
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
select: L[n]
, 
cons: [a / b]
, 
squash: ↓T
, 
less_than: a < b
, 
sq_type: SQType(T)
, 
cyclic-map: cyclic-map(T)
, 
injection: A →⟶ B
, 
sq_stable: SqStable(P)
, 
l_exists: (∃x∈L. P[x])
, 
l_all: (∀x∈L.P[x])
, 
orbit: orbit(T;f;L)
, 
eq_int: (i =z j)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
compose: f o g
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
cardinality-le: |T| ≤ n
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
no_repeats: no_repeats(T;l)
Lemmas referenced : 
nat_plus_wf, 
cons_wf, 
int_seg_wf, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
decidable__lt, 
lelt_wf, 
no_repeats_cons, 
no_repeats-strong-subtype, 
strong-subtype-set1, 
subtract_wf, 
length_of_cons_lemma, 
decidable__equal_int, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
no_repeats_wf, 
equal_wf, 
length_wf, 
combination_wf, 
l_member_wf, 
subtype_rel_list, 
int_seg_subtype, 
false_wf, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-commutes, 
le-add-cancel2, 
select_wf, 
nat_properties, 
int_seg_properties, 
cycle_wf2, 
nat_plus_subtype_nat, 
cyclic-map_wf, 
biject_wf, 
list_extensionality, 
less_than_wf, 
nat_wf, 
cycle-transitive1, 
le_wf, 
squash_wf, 
true_wf, 
select_cons_tl, 
subtype_rel_self, 
iff_weakening_equal, 
le_weakening2, 
non_neg_length, 
add-subtract-cancel, 
add_nat_plus, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
fun_exp_wf, 
zero-add, 
orbit-decomp2, 
decidable__equal-int_seg, 
finite-type-int_seg, 
sq_stable__inject, 
list_wf, 
orbit_wf, 
cyclic-map-transitive, 
orbit-closed, 
l_all_iff, 
all_wf, 
int_seg_subtype_nat, 
exists_wf, 
inject_wf, 
apply-cycle-member, 
orbit-iterates, 
fun_exp_unroll, 
fun_exp0_lemma, 
eq_int_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
rem_rec_case, 
less_than_transitivity2, 
rem_base_case, 
l_member_decomp, 
list-cardinality-le, 
cardinality-le-no_repeats-length, 
surject_wf, 
cardinality-le-int_seg, 
length_wf_nat, 
list_subtype_base, 
length-append, 
length_of_nil_lemma, 
no_repeats-append, 
append_wf, 
nil_wf, 
l_disjoint_append, 
l_disjoint_singleton, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
list-set-type2, 
add-is-int-iff, 
no_repeats-permute, 
no_repeats-sublist, 
append_assoc, 
sublist_append2, 
cycle-append, 
cycle_wf, 
cycle-injection, 
cycle-transitive2, 
l_all_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
productElimination, 
isectElimination, 
natural_numberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
hypothesisEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
productEquality, 
applyEquality, 
addEquality, 
minusEquality, 
multiplyEquality, 
applyLambdaEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
cumulativity, 
hyp_replacement, 
functionExtensionality, 
setEquality, 
equalityElimination, 
impliesFunctionality, 
promote_hyp, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
isect_memberFormation, 
functionEquality, 
allFunctionality
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  Combination(n  -  1;\mBbbN{}n  -  1)  \msim{}  cyclic-map(\mBbbN{}n)
Date html generated:
2018_05_21-PM-08_26_31
Last ObjectModification:
2018_05_19-PM-05_02_43
Theory : general
Home
Index