Nuprl Lemma : no_repeats-append
∀[T:Type]. ∀[L1,L2:T List].  uiff(no_repeats(T;L1 @ L2);{no_repeats(T;L1) ∧ no_repeats(T;L2) ∧ l_disjoint(T;L1;L2)})
Proof
Definitions occuring in Statement : 
l_disjoint: l_disjoint(T;l1;l2)
, 
no_repeats: no_repeats(T;l)
, 
append: as @ bs
, 
list: T List
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
guard: {T}
, 
l_disjoint: l_disjoint(T;l1;l2)
, 
or: P ∨ Q
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
cons: [a / b]
, 
decidable: Dec(P)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
no_repeats_witness, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
list-cases, 
list_ind_nil_lemma, 
no_repeats_nil, 
l_disjoint_nil, 
nil_wf, 
no_repeats_wf, 
l_disjoint_wf, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-le, 
append_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
le_wf, 
list_ind_cons_lemma, 
no_repeats_cons, 
cons_wf, 
l_disjoint_cons2, 
l_member_wf, 
member_append, 
istype-nat, 
list_wf, 
istype-universe, 
not_wf, 
iff_transitivity, 
iff_weakening_uiff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
Error :lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
productElimination, 
independent_pairEquality, 
because_Cache, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
Error :isectIsTypeImplies, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
unionElimination, 
Error :productIsType, 
promote_hyp, 
hypothesis_subsumption, 
Error :equalityIstype, 
Error :dependent_set_memberEquality_alt, 
instantiate, 
imageElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
sqequalBase, 
Error :unionIsType, 
universeEquality, 
productEquality, 
unionEquality, 
Error :functionIsType, 
Error :inlFormation_alt, 
Error :inrFormation_alt
Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].
    uiff(no\_repeats(T;L1  @  L2);\{no\_repeats(T;L1)  \mwedge{}  no\_repeats(T;L2)  \mwedge{}  l\_disjoint(T;L1;L2)\})
Date html generated:
2019_06_20-PM-01_27_27
Last ObjectModification:
2019_01_15-PM-02_18_12
Theory : list_1
Home
Index