Nuprl Lemma : no_repeats-append

[T:Type]. ∀[L1,L2:T List].  uiff(no_repeats(T;L1 L2);{no_repeats(T;L1) ∧ no_repeats(T;L2) ∧ l_disjoint(T;L1;L2)})


Proof




Definitions occuring in Statement :  l_disjoint: l_disjoint(T;l1;l2) no_repeats: no_repeats(T;l) append: as bs list: List uiff: uiff(P;Q) uall: [x:A]. B[x] guard: {T} and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: uiff: uiff(P;Q) guard: {T} l_disjoint: l_disjoint(T;l1;l2) or: P ∨ Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cons: [a b] decidable: Dec(P) colength: colength(L) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than no_repeats_witness intformeq_wf int_formula_prop_eq_lemma list-cases list_ind_nil_lemma no_repeats_nil l_disjoint_nil nil_wf no_repeats_wf l_disjoint_wf product_subtype_list colength-cons-not-zero colength_wf_list decidable__le intformnot_wf int_formula_prop_not_lemma istype-le append_wf subtract-1-ge-0 subtype_base_sq set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf itermSubtract_wf itermAdd_wf int_term_value_subtract_lemma int_term_value_add_lemma le_wf list_ind_cons_lemma no_repeats_cons cons_wf l_disjoint_cons2 l_member_wf member_append istype-nat list_wf istype-universe not_wf iff_transitivity iff_weakening_uiff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  productElimination independent_pairEquality because_Cache Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :isectIsTypeImplies,  equalityTransitivity equalitySymmetry applyLambdaEquality unionElimination Error :productIsType,  promote_hyp hypothesis_subsumption Error :equalityIstype,  Error :dependent_set_memberEquality_alt,  instantiate imageElimination baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase Error :unionIsType,  universeEquality productEquality unionEquality Error :functionIsType,  Error :inlFormation_alt,  Error :inrFormation_alt

Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].
    uiff(no\_repeats(T;L1  @  L2);\{no\_repeats(T;L1)  \mwedge{}  no\_repeats(T;L2)  \mwedge{}  l\_disjoint(T;L1;L2)\})



Date html generated: 2019_06_20-PM-01_27_27
Last ObjectModification: 2019_01_15-PM-02_18_12

Theory : list_1


Home Index