Nuprl Lemma : finite-type-int_seg
∀i,j:ℤ.  finite-type({i..j-})
Proof
Definitions occuring in Statement : 
finite-type: finite-type(T), 
int_seg: {i..j-}, 
all: ∀x:A. B[x], 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
finite-type: finite-type(T), 
cardinality-le: |T| ≤ n, 
member: t ∈ T, 
exists: ∃x:A. B[x], 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
le: A ≤ B, 
less_than': less_than'(a;b)
Lemmas referenced : 
int_seg-cardinality-le, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
subtract_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
false_wf, 
cardinality-le_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
dependent_pairFormation, 
isectElimination, 
hypothesis, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
because_Cache, 
dependent_set_memberEquality, 
natural_numberEquality, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination
Latex:
\mforall{}i,j:\mBbbZ{}.    finite-type(\{i..j\msupminus{}\})
Date html generated:
2017_04_17-AM-07_45_37
Last ObjectModification:
2017_02_27-PM-04_17_17
Theory : list_1
Home
Index