Nuprl Lemma : cyclic-map-transitive

n:ℕ. ∀f:cyclic-map(ℕn). ∀x,y:ℕn.  ∃m:ℕn. ((f^m x) y ∈ ℕn)


Proof




Definitions occuring in Statement :  cyclic-map: cyclic-map(T) fun_exp: f^n int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] cyclic-map: cyclic-map(T) injection: A →⟶ B uall: [x:A]. B[x] member: t ∈ T nat: so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q prop: so_apply: x[s] implies:  Q sq_stable: SqStable(P) exists: x:A. B[x] squash: T uimplies: supposing a l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top less_than: a < b uiff: uiff(P;Q) le: A ≤ B cand: c∧ B bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  less_than': less_than'(a;b) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  l_member: (x ∈ l) eq_int: (i =z j) subtract: m compose: g nat_plus: + true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  sq_stable_from_decidable exists_wf int_seg_wf equal_wf fun_exp_wf le_wf decidable__exists_int_seg decidable__equal_int_seg cyclic-map_wf nat_wf orbit-decomp decidable__equal-int_seg finite-type-int_seg injection_le length_wf_nat select_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt length_wf list_wf intformless_wf int_formula_prop_less_lemma no_repeats_inject inject_wf itermAdd_wf int_term_value_add_lemma lelt_wf less_than_wf all_wf eq_int_wf subtract_wf bool_wf eqtt_to_assert assert_of_eq_int false_wf intformeq_wf itermSubtract_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int l_member_wf set_subtype_base int_subtype_base ge_wf fun_exp_unroll non_neg_length squash_wf true_wf rem_base_case less_than_transitivity2 subtype_rel_self iff_weakening_equal decidable__equal_int equal-wf-T-base rem_bounds_1 rem_add1 assert_wf bnot_wf not_wf uiff_transitivity iff_transitivity iff_weakening_uiff assert_of_bnot rem_rec_case fun_exp-rem equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution setElimination thin rename cut introduction extract_by_obid isectElimination natural_numberEquality because_Cache hypothesis sqequalRule lambdaEquality applyEquality dependent_set_memberEquality productElimination hypothesisEquality independent_functionElimination instantiate dependent_functionElimination imageMemberEquality baseClosed imageElimination independent_isectElimination unionElimination approximateComputation dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation functionExtensionality addEquality productEquality equalityElimination equalityTransitivity equalitySymmetry promote_hyp cumulativity intWeakElimination axiomEquality applyLambdaEquality universeEquality remainderEquality impliesFunctionality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}f:cyclic-map(\mBbbN{}n).  \mforall{}x,y:\mBbbN{}n.    \mexists{}m:\mBbbN{}n.  ((f\^{}m  x)  =  y)



Date html generated: 2018_05_21-PM-08_25_27
Last ObjectModification: 2018_05_19-PM-05_01_17

Theory : general


Home Index