Nuprl Lemma : cyclic-map-transitive
∀n:ℕ. ∀f:cyclic-map(ℕn). ∀x,y:ℕn.  ∃m:ℕn. ((f^m x) = y ∈ ℕn)
Proof
Definitions occuring in Statement : 
cyclic-map: cyclic-map(T), 
fun_exp: f^n, 
int_seg: {i..j-}, 
nat: ℕ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
apply: f a, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
cyclic-map: cyclic-map(T), 
injection: A →⟶ B, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
prop: ℙ, 
so_apply: x[s], 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
exists: ∃x:A. B[x], 
squash: ↓T, 
uimplies: b supposing a, 
l_exists: (∃x∈L. P[x]), 
l_all: (∀x∈L.P[x]), 
guard: {T}, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
top: Top, 
less_than: a < b, 
uiff: uiff(P;Q), 
le: A ≤ B, 
cand: A c∧ B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
less_than': less_than'(a;b), 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
l_member: (x ∈ l), 
eq_int: (i =z j), 
subtract: n - m, 
compose: f o g, 
nat_plus: ℕ+, 
true: True, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
sq_stable_from_decidable, 
exists_wf, 
int_seg_wf, 
equal_wf, 
fun_exp_wf, 
le_wf, 
decidable__exists_int_seg, 
decidable__equal_int_seg, 
cyclic-map_wf, 
nat_wf, 
orbit-decomp, 
decidable__equal-int_seg, 
finite-type-int_seg, 
injection_le, 
length_wf_nat, 
select_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
length_wf, 
list_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
no_repeats_inject, 
inject_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
lelt_wf, 
less_than_wf, 
all_wf, 
eq_int_wf, 
subtract_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
false_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
l_member_wf, 
set_subtype_base, 
int_subtype_base, 
ge_wf, 
fun_exp_unroll, 
non_neg_length, 
squash_wf, 
true_wf, 
rem_base_case, 
less_than_transitivity2, 
subtype_rel_self, 
iff_weakening_equal, 
decidable__equal_int, 
equal-wf-T-base, 
rem_bounds_1, 
rem_add1, 
assert_wf, 
bnot_wf, 
not_wf, 
uiff_transitivity, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
rem_rec_case, 
fun_exp-rem, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
dependent_set_memberEquality, 
productElimination, 
hypothesisEquality, 
independent_functionElimination, 
instantiate, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_isectElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
functionExtensionality, 
addEquality, 
productEquality, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
cumulativity, 
intWeakElimination, 
axiomEquality, 
applyLambdaEquality, 
universeEquality, 
remainderEquality, 
impliesFunctionality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}f:cyclic-map(\mBbbN{}n).  \mforall{}x,y:\mBbbN{}n.    \mexists{}m:\mBbbN{}n.  ((f\^{}m  x)  =  y)
Date html generated:
2018_05_21-PM-08_25_27
Last ObjectModification:
2018_05_19-PM-05_01_17
Theory : general
Home
Index