Nuprl Lemma : no_repeats_inject
∀[T:Type]. ∀[l:T List].  uiff(no_repeats(T;l);Inj(ℕ||l||;T;λi.l[i]))
Proof
Definitions occuring in Statement : 
no_repeats: no_repeats(T;l), 
select: L[n], 
length: ||as||, 
list: T List, 
inject: Inj(A;B;f), 
int_seg: {i..j-}, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
lambda: λx.A[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
no_repeats: no_repeats(T;l), 
inject: Inj(A;B;f), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
int_seg: {i..j-}, 
sq_stable: SqStable(P), 
lelt: i ≤ j < k, 
squash: ↓T, 
not: ¬A, 
false: False, 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b)
Lemmas referenced : 
equal_wf, 
select_wf, 
sq_stable__le, 
int_seg_wf, 
length_wf, 
not_wf, 
nat_wf, 
less_than_wf, 
no_repeats_witness, 
no_repeats_wf, 
inject_wf, 
list_wf, 
decidable__equal_int_seg, 
int_seg_subtype_nat, 
false_wf, 
lelt_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
isectElimination, 
thin, 
because_Cache, 
setElimination, 
rename, 
independent_isectElimination, 
natural_numberEquality, 
hypothesisEquality, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
cumulativity, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
voidElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairEquality, 
universeEquality, 
unionElimination, 
applyEquality, 
applyLambdaEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].    uiff(no\_repeats(T;l);Inj(\mBbbN{}||l||;T;\mlambda{}i.l[i]))
Date html generated:
2017_04_14-AM-08_39_51
Last ObjectModification:
2017_02_27-PM-03_30_12
Theory : list_0
Home
Index