Nuprl Lemma : fun_exp-rem
∀[T:Type]. ∀[f:T ⟶ T]. ∀[x:T]. ∀[n:ℕ+].  ∀[k:ℕ]. ((f^k x) = (f^k rem n x) ∈ T) supposing (f^n x) = x ∈ T
Proof
Definitions occuring in Statement : 
fun_exp: f^n
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
remainder: n rem m
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
int_nzero: ℤ-o
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
false: False
, 
guard: {T}
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
label: ...$L... t
, 
fun_exp: f^n
, 
primrec: primrec(n;b;c)
Lemmas referenced : 
div_rem_sum, 
subtype_rel_sets, 
less_than_wf, 
nequal_wf, 
nat_plus_properties, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
equal_wf, 
fun_exp_wf, 
nat_plus_subtype_nat, 
nat_plus_wf, 
remainder_wf, 
nat_wf, 
div_bounds_1, 
mul_bounds_1a, 
divide_wf, 
subtype_base_sq, 
set_subtype_base, 
le_wf, 
decidable__equal_int, 
add-is-int-iff, 
multiply-is-int-iff, 
intformnot_wf, 
itermAdd_wf, 
itermMultiply_wf, 
int_formula_prop_not_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
false_wf, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
fun_exp_add-sq, 
squash_wf, 
true_wf, 
fun_exp-mul, 
iff_weakening_equal, 
fun_exp-fixedpoint
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
intEquality, 
because_Cache, 
lambdaEquality, 
natural_numberEquality, 
independent_isectElimination, 
setEquality, 
lambdaFormation, 
applyLambdaEquality, 
dependent_pairFormation, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
baseClosed, 
independent_functionElimination, 
axiomEquality, 
cumulativity, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
addEquality, 
multiplyEquality, 
divideEquality, 
instantiate, 
productElimination, 
unionElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
dependent_set_memberEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].  \mforall{}[x:T].  \mforall{}[n:\mBbbN{}\msupplus{}].    \mforall{}[k:\mBbbN{}].  ((f\^{}k  x)  =  (f\^{}k  rem  n  x))  supposing  (f\^{}n  x)  =  x
Date html generated:
2017_04_14-AM-09_16_48
Last ObjectModification:
2017_02_27-PM-03_53_54
Theory : int_2
Home
Index