Nuprl Lemma : fun_exp-rem

[T:Type]. ∀[f:T ⟶ T]. ∀[x:T]. ∀[n:ℕ+].  ∀[k:ℕ]. ((f^k x) (f^k rem x) ∈ T) supposing (f^n x) x ∈ T


Proof




Definitions occuring in Statement :  fun_exp: f^n nat_plus: + nat: uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] remainder: rem m universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: subtype_rel: A ⊆B nat_plus: + int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] prop: all: x:A. B[x] implies:  Q nequal: a ≠ b ∈  not: ¬A false: False guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q le: A ≤ B decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) sq_type: SQType(T) squash: T true: True iff: ⇐⇒ Q rev_implies:  Q label: ...$L... t fun_exp: f^n primrec: primrec(n;b;c)
Lemmas referenced :  div_rem_sum subtype_rel_sets less_than_wf nequal_wf nat_plus_properties nat_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base equal_wf fun_exp_wf nat_plus_subtype_nat nat_plus_wf remainder_wf nat_wf div_bounds_1 mul_bounds_1a divide_wf subtype_base_sq set_subtype_base le_wf decidable__equal_int add-is-int-iff multiply-is-int-iff intformnot_wf itermAdd_wf itermMultiply_wf int_formula_prop_not_lemma int_term_value_add_lemma int_term_value_mul_lemma false_wf decidable__le intformle_wf int_formula_prop_le_lemma fun_exp_add-sq squash_wf true_wf fun_exp-mul iff_weakening_equal fun_exp-fixedpoint
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis applyEquality sqequalRule intEquality because_Cache lambdaEquality natural_numberEquality independent_isectElimination setEquality lambdaFormation applyLambdaEquality dependent_pairFormation int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll baseClosed independent_functionElimination axiomEquality cumulativity functionExtensionality equalityTransitivity equalitySymmetry functionEquality addEquality multiplyEquality divideEquality instantiate productElimination unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion dependent_set_memberEquality imageElimination universeEquality imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].  \mforall{}[x:T].  \mforall{}[n:\mBbbN{}\msupplus{}].    \mforall{}[k:\mBbbN{}].  ((f\^{}k  x)  =  (f\^{}k  rem  n  x))  supposing  (f\^{}n  x)  =  x



Date html generated: 2017_04_14-AM-09_16_48
Last ObjectModification: 2017_02_27-PM-03_53_54

Theory : int_2


Home Index