Nuprl Lemma : cyclic-map_wf

[T:Type]. (cyclic-map(T) ∈ Type)


Proof




Definitions occuring in Statement :  cyclic-map: cyclic-map(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cyclic-map: cyclic-map(T) so_lambda: λ2x.t[x] injection: A →⟶ B so_apply: x[s] exists: x:A. B[x] all: x:A. B[x] prop:
Lemmas referenced :  injection_wf all_wf exists_wf nat_wf equal_wf fun_exp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality applyEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  (cyclic-map(T)  \mmember{}  Type)



Date html generated: 2016_05_15-PM-06_18_30
Last ObjectModification: 2015_12_27-PM-00_07_18

Theory : general


Home Index