Nuprl Lemma : cyclic-map_wf
∀[T:Type]. (cyclic-map(T) ∈ Type)
Proof
Definitions occuring in Statement : 
cyclic-map: cyclic-map(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cyclic-map: cyclic-map(T)
, 
so_lambda: λ2x.t[x]
, 
injection: A →⟶ B
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
injection_wf, 
all_wf, 
exists_wf, 
nat_wf, 
equal_wf, 
fun_exp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  (cyclic-map(T)  \mmember{}  Type)
Date html generated:
2016_05_15-PM-06_18_30
Last ObjectModification:
2015_12_27-PM-00_07_18
Theory : general
Home
Index