Nuprl Lemma : cardinality-le-int_seg

[x,y:ℤ]. ∀[n:ℕ].  (y x) ≤ supposing |{x..y-}| ≤ n


Proof




Definitions occuring in Statement :  cardinality-le: |T| ≤ n int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B subtract: m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a cardinality-le: |T| ≤ n exists: x:A. B[x] all: x:A. B[x] decidable: Dec(P) or: P ∨ Q nat: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: le: A ≤ B iff: ⇐⇒ Q int_seg: {i..j-} uiff: uiff(P;Q) lelt: i ≤ j < k inject: Inj(A;B;f) guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) subtype_rel: A ⊆B squash: T true: True
Lemmas referenced :  decidable__lt nat_properties decidable__le subtract_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermSubtract_wf itermVar_wf intformless_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf less_than'_wf cardinality-le_wf int_seg_wf nat_wf surject-inverse pigeon-hole le_wf add-member-int_seg1 lelt_wf equal_wf int_seg_properties subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int_seg itermAdd_wf int_term_value_add_lemma intformeq_wf int_formula_prop_eq_lemma decidable__equal_int squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin extract_by_obid dependent_functionElimination hypothesisEquality hypothesis unionElimination isectElimination setElimination rename natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_pairEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry independent_functionElimination dependent_set_memberEquality applyEquality functionExtensionality lambdaFormation promote_hyp instantiate cumulativity addEquality imageElimination universeEquality applyLambdaEquality imageMemberEquality baseClosed

Latex:
\mforall{}[x,y:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    (y  -  x)  \mleq{}  n  supposing  |\{x..y\msupminus{}\}|  \mleq{}  n



Date html generated: 2017_04_17-AM-07_46_22
Last ObjectModification: 2017_02_27-PM-04_18_36

Theory : list_1


Home Index