Nuprl Lemma : cardinality-le-int_seg
∀[x,y:ℤ]. ∀[n:ℕ].  (y - x) ≤ n supposing |{x..y-}| ≤ n
Proof
Definitions occuring in Statement : 
cardinality-le: |T| ≤ n, 
int_seg: {i..j-}, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
subtract: n - m, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
cardinality-le: |T| ≤ n, 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
nat: ℕ, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
le: A ≤ B, 
iff: P ⇐⇒ Q, 
int_seg: {i..j-}, 
uiff: uiff(P;Q), 
lelt: i ≤ j < k, 
inject: Inj(A;B;f), 
guard: {T}, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
subtype_rel: A ⊆r B, 
squash: ↓T, 
true: True
Lemmas referenced : 
decidable__lt, 
nat_properties, 
decidable__le, 
subtract_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
less_than'_wf, 
cardinality-le_wf, 
int_seg_wf, 
nat_wf, 
surject-inverse, 
pigeon-hole, 
le_wf, 
add-member-int_seg1, 
lelt_wf, 
equal_wf, 
int_seg_properties, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
decidable__equal_int_seg, 
itermAdd_wf, 
int_term_value_add_lemma, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
decidable__equal_int, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
unionElimination, 
isectElimination, 
setElimination, 
rename, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_pairEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
dependent_set_memberEquality, 
applyEquality, 
functionExtensionality, 
lambdaFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
addEquality, 
imageElimination, 
universeEquality, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[x,y:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    (y  -  x)  \mleq{}  n  supposing  |\{x..y\msupminus{}\}|  \mleq{}  n
Date html generated:
2017_04_17-AM-07_46_22
Last ObjectModification:
2017_02_27-PM-04_18_36
Theory : list_1
Home
Index